
OPIUM: Optimal Package Install/Uninstall Manager∗

Chris Tucker
UC San Diego

cjtucker@cs.ucsd.edu

David Shuffelton
UC San Diego

dshuffel@cs.ucsd.edu

Ranjit Jhala
UC San Diego

jhala@cs.ucsd.edu

Sorin Lerner
UC San Diego

lerner@cs.ucsd.edu

Abstract

Linux distributions often include package management
tools such as apt-get in Debian or yum in RedHat. Us-
ing information about package dependencies and conflicts,
such tools can determine how to install a new package (and
its dependencies) on a system of already installed packages.
Using off-the-shelf SAT solvers, pseudo-boolean solvers,
and Integer Linear Programming solvers, we have devel-
oped a new package-management tool, called Opium, that
improves on current tools in two ways: (1) Opium is com-
plete, in that if there is a solution, Opium is guaranteed to
find it, and (2) Opium can optimize a user-provided objec-
tive function, which could for example state that smaller
packages should be preferred over larger ones. We per-
formed a comparative study of our tool against Debian’s
apt-get on 600 traces of real-world package installa-
tions. We show that Opium runs fast enough to be usable,
and that its completeness and optimality guarantees provide
concrete benefits to end users.

1 Introduction
Dynamic software linking is pervasive, ranging from dy-
namic linking of libraries at runtime to inter-process invo-
cation. Dynamic linking has numerous benefits, including
saving memory both on disk and in RAM (since one copy
of a library/package can be shared across many different
applications), and allowing installed applications to easily
benefit from updated libraries/packages. With these bene-
fits, however, comes a configuration management problem
that is difficult to solve. Libraries and software packages
have dependencies that must be satisfied, and conflicts that
must be avoided. Otherwise the entire system, not just a
single application, may become unstable.

In the context of Windows, this configuration manage-
ment problem has led to what is called “DLL hell”: an ap-
plication is installed with a variety of dynamically linked
libraries, some of which override older versions of those

∗This research was supported in part by the UCSD FWGrid Project,
NSF Research Infrastructure Grant Number EIA-0303622.

libraries. Previously installed applications then break, be-
cause they were not meant to work with the new libraries.
Users must typically intervene manually in order to bring
the system back to a stable state.

In the context of Linux- and Unix-based systems, a
variety of automated tools have been developed to ad-
dress this configuration management problem, for exam-
ple apt-get [14] on Debian, yum [4] on RedHat, and
fink [1] on Mac OS. Using information about package
dependencies and conflicts, such tools can determine how
to install a new package along with all its dependencies on
a system of already installed packages. However, the com-
plexity of the dependencies and conflicts mean that such
tools typically use heuristics and are therefore incomplete,
in that even if a package is installable the tool may fail to
find a solution. Furthermore, if there are multiple ways of
installing a given package then current tools will arbitrar-
ily pick between them without taking any user preferences
into account. Such preferences could, for example, include
selecting smaller packages if the user has limited download
bandwidth, or newer packages if the user wants the newest
possible system.

Our goal in this work is to develop a uniform and com-
plete solution to the configuration management problem
that arises from having various inter-depending packages
installed on the same system. In particular, using off-the-
shelf SAT solvers, pseudo-boolean solvers, and Integer Lin-
ear Programming solvers we have designed a tool called
Opium that solves the configuration management problem,
and addresses the above limitations of existing package in-
stallers: it is complete (in that if there is a solution, it will
find it) and it also allows one to optimize a given objective
function. In addressing these limitations, Opium provides
the following benefits:

• It improves on the reliability of apt-get. Our mea-
surements on 600 traces of real-world install attempts
suggest that about 23.3% of Debian users will be af-
fected by apt-get’s incompleteness at some point in
the lifetime of their system. This is especially concern-
ing for companies like Linspire (where two of the au-
thors worked) and distributions like Ubuntu, which are

1

trying to make Linux usable by non-experts who don’t
have the sophistication to manually install packages if
apt-get fails. The Opium tool entirely removes these
incompleteness failures.

• Opium allows users to state their preferences through
an objective function, and guarantees that this objective
function will be minimized. This can in turn have real
economic impact for Linux distributors. For example,
Linspire provides a Linux distribution that is a low-cost
alternative to platforms like Microsoft’s Windows and
Apple’s OS X. Their Linux distribution is therefore pop-
ular in many environments where bandwidth is at a pre-
mium (and even charged for per-byte). In order to pro-
vide the best experience at the lowest cost for the end
user it is important that bandwidth not be wasted. In
this context, minimizing the size of packages delivered
has the potential to offer a real economic benefit while
simultaneously reducing wait times for users. In our
measurements, for example, we found a real-world in-
stall attempt where apt-get’s solution requires down-
loading 129MB more than Opium’s optimal solution.

• There are cases where some packages need to be re-
moved from the system before a new package is in-
stalled. Because Opiumminimizes the number of pack-
ages being removed it can find solutions that remove
far fewer packages than existing package managers. In
our experiments, we discovered a real user trace where
an install attempt for OCaml using apt-get caused
61 packages to be removed, including the Linux kernel.
This poor user would not be able to reboot their machine
after installing OCaml. Because Opium minimizes the
number of packages being removed it was able to find a
solution that removed only 22 packages, none of which
were the kernel.

• By providing a completeness guarantee, Opium allows
Linux providers like Linspire to make quality of service
claims regarding the predictability of user systems. In
particular, if Linspire uses a tool like debcheck [10] to
check the consistency of a given distribution (which es-
sentially involves making sure that all packages in the
distribution are installable), then they can provide the
guarantee that all install attempts using Opium from
that distribution will succeed on any user system.

Concretely, in this paper we investigate three problems
in the context of package management. In particular, given
a set of installed packages, and information about package
dependencies and conflicts, the three problems are:

Install Problem : Determine if a new package can be
installed and, if so, determine how.

Minimum Install Problem : Determine the optimal
way to install a new package, where optimality is de-
termined by an objective function whose value is to
be minimized.

Uninstall Problem : Given a new package to install,
determine the minimal number of packages (possibly
none) that must be removed from the system in order
to make the package installable.

The main contribution of this paper is a solution to the
above three problems. We solve the Install Problem by
running a SAT solver on a propositional encoding of the
distribution (Section 3.1). This encoding is similar to, but
independently developed from, the one presented in a forth-
coming paper [10]. Further, we show how the SAT problem
can be extended with an objective function, thus becoming a
so-called pseudo-boolean problem that solves the Minimum
Install Problem (Section 3.2). We also show how a well-
known translation can be used to generate an Integer Lin-
ear Programming (ILP) problem from the pseudo-boolean
problem [8]. Highly tuned solvers exist for both pseudo-
boolean problems and ILP problems. Finally, we show how
a SAT solver that produces a proof of unsatisfiability can
be used to solve the Uninstall Problem (Section 3.3). Intu-
itively, if a package is not installable, then from the proof of
unsatisfiability of the SAT problem we can determine what
packages caused the conflicts and therefore need to be re-
moved.

We have implemented all of the above techniques in a
tool called Opium (Optimal Package Install/Uninstall Man-
ager) for installing packages on the Debian system. Opium
uses Pueblo [13] for the pseudo-boolean solver, the GNU
Linear Programming Kit (GLPK) [3] for the ILP solver, and
the foci [11] theorem prover for producing unsatisfiability
proofs. To evaluate the practicality and benefits of our al-
gorithms we perform a comparative study of Opium versus
Debian’s installer, apt-get, using 600 traces of real world
installations (Section 4). Gathering information about the
runtime and results of apt-get versus various configu-
rations of Opium, we quantify the benefits that Opium’s
completeness and optimality provide, as well as show that
it runs well within the limits of usability.

2 Overview
We begin with an overview of the install and uninstall prob-
lems and our solutions. A typical Linux distribution com-
prises a set of packages, each of which has a name and a
version, distributed either on disk or stored in online repos-
itories. Each user has a subset of these packages installed
on his machine. Many packages depend on other packages
for some functionality. For example, the apache web-
server may require the system to also have a perl inter-

2

Package: apache
Architecture: i386
Version: 1.3.34-2
Provides: httpd-cgi, httpd
Depends: libc6(>=2.3.5-1),
libdb4.3(>=4.3.28-1),
debconf(>=0.5) | debconf-2.0,
apache-common(>=1.3.34-2),
perl(>=5.8.4-2)

Conflicts: apache-modules,
jserv(<=1.1-3)
libapache-mod-perl

Description: HTTP server.

Figure 1: Metadata for apache Figure 2: Distribution Graph

Distribution Rules Constraints
Package: a
Depends: b, (¬xa ∨ xb)

c, (¬xa ∨ xc)
z (¬xa ∨ xz)

Package: b
Depends: d (¬xb ∨ xd)

Package: c
Depends: d | e, (¬xc ∨ xd ∨ xe)

f | g (¬xc ∨ xf ∨ xg)

Package: d
Conflicts: e (¬xd ∨ ¬xe)

Figure 3: Fragment of Distribution Meta-
data and Corresponding Constraints

preter. Thus, each distribution contains a metadata file that
describes the requirements of each package of the distribu-
tion. For example, metadata for the apache package in the
Debian distribution sid is shown in Figure 1.

The metadata contains details like the name, version,
size, a description of the functionality provided by the pack-
age, etc. More importantly, it contains depends and conflicts
clauses that stipulate which other packages should be on the
system. The depends clauses stipulate which other pack-
ages must be present. Thus, in order to install apache,
several other packages including perl, libc6, libdb
and apache-common must be installed. Sometimes, a
package requires any of a set of packages to be installed,
possibly because each package in the set provides the re-
quired functionality. For example, the third depends clause
is a disjunction that stipulates that either debconf (with
a version greater than 0.5) or debconf-2.0 must be
present. The conflicts clauses stipulate which other pack-
ages must not be present. Thus, the apache package
should only be installed on a system that does not also
have the apache-modules package, any instance of the
jserv package with version less then 1.1.3 and so on.
Thus, to install apache, the package manager must find
out which other packages must be installed such that ulti-
mately the system contains a set of packages that meet all
the requirements specified in the distribution metadata file.

We now illustrate our approach using a small distribution
with the 9 packages a, b, c, d, e, f, g, y, and z. A distilled
version of the metadata rules for this distribution is shown
on the left in Figure 3. In order for the package a to be
installed on the system, packages b, c and z must also be
installed, while for package c to be installed, one of d, e
must be installed and one of f, g must be installed. The
conflicts clause for d says that e must not be present on the
same system as d.

Figure 2 shows a graph representation of the depends and
conflicts clauses. Each package is shown in a square ver-

tex, and there are directed edges to the other packages that
must also be present. Whenever there is a disjunction in
the depends, we represent it with a circle vertex which has
directed edges to each package in the disjunction. Finally,
there is a dotted edge between pairs of conflicting packages.

Installation Profiles. We call the set of packages installed
on a machine the installation profile of that machine. A
valid installation profile is one which meets all the depends
and conflicts clauses of all the packages. Thus, the pro-
files {}, {y, z} and {a, b, c, d, f, z} are all valid installa-
tion profiles, as each package’s depends and conflict clauses
are satisfied. On the other hand, {a, b, c, d, z} is not a
valid profile, as c requires one of f or g to be present,
but both are absent from the profile. Similarly, the profile
{a, b, c, d, e, f, z} is not a valid profile as it contains both d
and the conflicting package e.

2.1 The Install Problem
Consider a user with the installation profile {z} who wishes
to install the package a. The install problem is to determine
whether there is some set of new packages including a that
can be added to the machine, such that the resulting set of
packages is a valid installation profile.

A tool like apt-get proceeds by traversing the depen-
dency graph and building up the set of other packages that
must be installed before a. To be efficient it restricts the
number of backtracks performed due to conflicts and thus
loses completeness, in the sense that apt-get may incor-
rectly report that there is no suitable set of new packages
even though one exists.

Encoding Distributions as Constraints. Our approach to
the problem is to encode it as a system of propositional con-
straints over variables representing the packages of the dis-
tribution. We create propositional variables for each pack-
age of the distribution and then create propositional con-
straints over the variables for each rule in the distribution.

3

Every satisfying assignment to the constraints is such that
the variables that are assigned TRUE form a valid installa-
tion profile for the distribution.

We create a variable xp for each package p in the dis-
tribution. Next, we create constraints for each clause of
the distribution, including those for currently installed pack-
ages. For instance, the first depends clause for a is encoded
as (¬xa ∨ xb) which stipulates that either xa is FALSE, i.e.,
a is not in the profile or, if it is, then xb is TRUE, i.e., b
is in the profile. The first disjunctive depends clause for c
is translated to: (¬xc ∨ xd ∨ xe) which ensures that either
xc is FALSE, i.e., c is not in the profile or, if it is, then one
of xd or xe must be TRUE, i.e., one of the packages d or
e must also be in the profile. The conflicts clause for d is
translated to: (¬xd ∨ ¬xe) which ensures that both xd and
xe are not TRUE, i.e., that both are not in the profile. In
Figure 3, each row has a distribution rule in the left column
and its propositional encoding in the right column.

SAT-based Installation Checking. To determine whether
there is some set of new packages including a that the user
can install that results in a valid installation profile, we use a
SAT solver to find a satisfying assignment to the following
install formula: (Distrib(R)∧xz ∧xa) where Distrib(R) is
the conjunction of all the constraints generated by the distri-
bution (the right column in Figure 3). The formula, then, is
the conjunction of Distrib(R) with the literals correspond-
ing to the currently installed packages and the package to
be installed.

For every satisfying assignment to the above formula, the
set of packages corresponding to variables assigned TRUE
is a set of packages including a that is a valid installation
profile. It is easy to check that the assignment xa = xb =
xc = xz = xd = xf = TRUE satisfies the formula, and
from it we obtain a set of new packages including a that the
user can download and safely install.

2.2 The Minimum Install Problem

In our example, there are actually four distinct sat-
isfying assignments for the formula and thus four
ways to safely install a, corresponding to the sets:
{a, b, c, z, d, f}, {a, b, c, z, d, g}, {a, b, c, z, d, f, y}, and
{a, b, c, z, d, g, y}. In general the SAT solver will return
any one of exponentially many satisfying assignments for
the formula, many of which will include irrelevant pack-
ages (such as y in the example above). In the example, we
may install g instead of f as either one satisfies the depends
clause for c. There are many situations in which we would
like to bias the package manager towards a particular choice
– for example, towards the fewest number of new packages
or the packages with the smallest total size. The minimum
install problem is to find, given a cost for each package of
the distribution, the set of new packages that must be in-

Figure 4: Resolution Proof of Contradiction of Distrib(R)∧
(xz∧xe)∧xa. Each leaf is a clause of the formula: the right-
most literal is from a, the package to be installed, the left-
most literal is from the pre-existing (conflicting) package
e, the white boxes are clauses from the distribution con-
straints. Each internal clause is generated by a resolution
deduction of the form: (A∨x)∧ (¬x∨B) implies (A∨B)

stalled with the smallest total cost.
The incompleteness of previous techniques makes it im-

possible to exhaustively search the solution space to find
the set of packages with the minimum total cost. We extend
our technique to the minimizing problem, by using pseudo-
boolean (or equivalently, integer linear) constraints to en-
code the problem, and then using an appropriate solver to
find the best solution.

Suppose that packages f and g have sizes of 5MB and
2MB respectively and all the other packages have size 1MB.
Consider a user with the profile {z} who wishes to down-
load the fewest total number of bytes required to install
the package a. To find the set of packages that the user
should install, we generate and solve the pseudo-boolean
constraint:

min xa + xb + xc + xd + xe + 5xf + 2xg + xy + 0xz

s. t. Distrib(R) ∧ xz ∧ xa

which specifies the satisfying assignment to the install for-
mula, with the minimum total sizes (where we interpret
TRUE as 1 and FALSE as 0). It is easy to check that the
minimum assignment is the one that assigns TRUE to all
variables except e, f and y, thereby resulting in the instal-
lation of all the other packages.

2.3 The Uninstall Problem
Suppose that another user with the installation profile {z, e}
wishes to install the package a. To do so, we must install
b, and therefore d. Unfortunately, d is in conflict with a
package e that is already installed. So, to install a we must
first uninstall the previously installed package e that transi-
tively conflicts with a. The uninstall problem is to find the
set of packages currently installed on the system that must
be removed in order to install some new package.

Using our technique, to determine if a could be installed
we would query a SAT solver with the install formula:

4

(Distrib(R)∧xz∧xe∧xa) The solver would report that the
install formula was unsatisfiable, and would in addition re-
turn a resolution proof tree, such as that in Figure 4, which
explained why the formula implied a contradiction and thus
had no satisfying assignment.

The leaves of the proof tree correspond to clauses from
the install formula. The leaf clauses that are the single vari-
ables obtained from previously installed packages yield the
transitively conflicting packages that must be removed from
the system to install the new package. Thus, in our example,
the only leaf in the proof tree corresponding to a previously
installed package is the xe which reveals that e must be re-
moved in order to install a. As with installation, there may
be multiple sets of transitively conflicting packages, and so
we show how to extend our technique to find the set that
minimizes a given cost function.

3 Details
This section describes the details of our technique for
solving package management problems using SAT solvers,
pseudo-boolean solvers and ILP solvers. After first formal-
izing distributions and valid installation profiles, we formal-
ize and present solutions to the three package management
problems: the Install Problem (Section 3.1), the Minimum
Install Problem (Section 3.2), and the Uninstall Problem
(Section 3.3). Finally, we show how our solutions are com-
bined in the tool Opium (Section 3.4).
Distributions
A distribution R is a finite set of package rules, where each
package rule is a tuple of the form (p,D ,C), where p is a
package and:
• D is a set of dependency clauses for p that stipulate

which packages must be present in order to install the
package p. Each dependency clause is a disjunction of
packages p1 | . . . | pk. Intuitively, a dependency clause
stipulates that some package from the set p1, . . . , pk

must be present in order for the package p to work prop-
erly.

• C is a set of conflict clauses for p that stipulate which
packages must not be present on the same system as p.
Each conflict clause is a package p′ whose presence on
the same system as p will cause problems.

For example, we formalize the distribution from Section 2
as the set of rules:
(a, {b, c, z}, ∅), (b, {d}, ∅), (c, {d | e, f | g}, ∅)
(d, ∅, {e}), (e, ∅, {d}), (f, ∅, ∅), (g, ∅, ∅), (y, {z}, ∅), (z, ∅, ∅).

Valid Installation Profiles
An installation profile for a distribution is a subset of the
packages of the distribution, which could, for example, be
the set of packages from the distribution installed on a par-
ticular machine. To ensure the proper functioning of the

machine we require the installation profile of the machine
to be valid, meaning that it meets the requirements of each
package in the profile.

To formalize this notion of validity we start by defin-
ing when dependency clauses and conflict clauses are sat-
isfied. An installation profile satisfies a dependency clause
p1 | . . . | pk for p iff either p is not present in the profile or
some package in the set {p1, . . . , pk} is present in the pro-
file. An installation profile satisfies a conflict clause p′ for
p iff either p is not present in the profile, or p′ is not present
in the profile. A valid installation profile for a distribution
is one that satisfies the dependency and conflict clauses of
each package rule of the distribution.

Readers familiar with Debian may note that we have
simplified the definition of a distribution in several ways.
First, our distributions contain both the rules from a central
repository, and the actual packages installed on the user’s
machine. Second, packages in an actual Debian distribu-
tion have version numbers, which can be referred to by
depends and conflicts clauses. We assume for simplicity
that the clauses have been expanded to include all the ver-
sions of a particular package that are included in a distribu-
tion. Third, the Debian metadata may also contain provides
clauses, which can be expanded in a way similar to version
numbers. We make these simplifications for brevity – our
implementation in Opium handles all these features.

3.1 The Install Problem
We now turn our attention to the problem of determining
whether (and how) a new package can be installed on a ma-
chine upon which some set of packages is already installed.
This problem is formalized as follows:

Problem 1 (Install Problem) Given a distribution R, an
installation profile P , and a new package p, does there exist
a set of packages P ′ containing p such that P∪P ′ is a valid
installation profile for R.

If such a P ′ exists, we say that p can be installed on P
– by adding the packages in P ′ we get a valid installation
profile containing the new package p. If instead no such P ′

exists then it is impossible to safely install p on the machine
already containing P .

Recall that our algorithm for solving the install problem
is to reduce it to a system of propositional constraints whose
satisfying assignments correspond directly to valid installa-
tion profiles. We introduce one boolean variable xp for each
package p to represent the presence of p. Truth assignments
for the variables then correspond to installation profiles: xp

is assigned TRUE iff p is in the corresponding installation
profile. Once the problem has been converted to a system
of propositional constraints we use a SAT solver to deter-
mine whether the constraints are satisfiable – if so, we can

5

Distrib(R) ≡
∧

r∈R Rule(r)

Rule(p,D ,C) ≡
∧

d∈D Depend(p, d) ∧∧
c∈C Conflict(p, c)

Depend(p, p1 | . . . | pk) ≡ ¬xp ∨
∨

i=1...k pi

Conflict(p, p′) ≡ ¬xp ∨ ¬p′

Figure 5: Propositional Distribution Constraints

Algorithm 1 Install(R,P , p)
f := Distrib(R) ∧

∧
p′∈P xp′ ∧ xp

match SatSolve(f) with
| UNSAT −→ return IMPOSSIBLE
| SAT (A) −→ return {p′ | A(xp′) = TRUE} − P

directly extract the P ′ from the assignment returned by the
solver. If not, we conclude that the installation is not possi-
ble.

The first step in our algorithm is to generate the proposi-
tional constraints for a distribution R. Our procedure for
doing so is shown in Figure 5. Given a distribution R,
Distrib(R) returns a boolean formula corresponding to valid
installation profiles for R, where:
• Rule(p,D ,C) returns a boolean formula correspond-

ing to installation profiles that satisfy the package rule
(p,D ,C). The first and second conjuncts respectively
ensure that each of the dependency and conflict rules are
satisfied by the installation profile.

• Depend(p, p1 | . . . | pk) returns a boolean formula that
ensures that if the package p is in the profile, then some
package from the set p1, . . . , pk is also in the profile.

• Conflict(p, p′) returns a boolean formula that ensures
that either p or p′ is not in the profile.

Our algorithm Install for solving the Install Problem is
shown in Algorithm 1. Making use of the above Distrib pro-
cedure, it creates a boolean formula capturing valid installa-
tion profiles including packages P and p, and then invokes
a SAT solver to find a satisfying assignment. If a satisfying
assignment A mapping boolean variables to truth values is
found, we return the set of packages whose variables are as-
signed to TRUE (minus those packages in P). Otherwise,
we conclude that it is not possible to safely install the pack-
age p.

3.2 The Minimum Install Problem
Owing to the disjunctions in the dependency rules there are
often many ways to install a new package. In these situa-

Algorithm 2 MinInstall(R,P , p,Cost)
c :=

∑
Cost(p′) · xp′

f := Distrib(R) ∧
∧

p′∈P xp′ ∧ xp

match MinPBSolve(c, f) with
| UNSAT −→ return IMPOSSIBLE
| SAT (A) −→ return {p′ | A(xp′) = TRUE} − P

tions we would like a way to select the “best” possible in-
stallation path. One may for example want to find the in-
stallation path in which the fewest number of new packages
are added or, if the user is connected via a low-bandwidth
link, one may want to find the installation path with the least
number of downloaded bytes. We generalize these prob-
lems as follows:

Problem 2 (Minimum Install Problem) Given a distribu-
tion R, an installation profile P , a new package p, and a
cost function Cost mapping packages to an integer cost,
find a set of packages P ′ containing p with a minimum value
of

∑
p′∈P ′ Cost(p′), such that P ∪P ′ is a valid installation

profile for R.

The cost function above encodes the requirements for
the “best” install. Once we find the P ′ with the minimum
cost, the user can install the additional packages in P ′, and
thereby obtain a valid installation profile containing the new
package p.

Our technique of reducing the installation problem to
propositional constraints extends to the Minimum Install
Problem. In addition to the propositional constraints, we
create a pseudo-boolean constraint representing the linear
cost function and employ a pseudo-boolean solver to find a
minimizing assignment.

A pseudo-boolean constraint is a pair (
∑

x∈X cx · x, f)
where X is a set of propositional variables, each cx is
an integer, and f is a propositional formula over X .
The cost of a truth assignment A for the variables X is∑

{cx | A(x) = TRUE}. A minimum cost satisfying as-
signment to a pseudo-boolean constraint is an assignment
A that satisfies f , whose cost is less than or equal to the
cost of every other satisfying assignment of f .

Our algorithm MinInstall for solving the Minimum In-
stall Problem is shown in Algorithm 2. Using the cost mea-
sure it creates a pseudo-boolean constraint capturing valid
installation profiles including P and p, and then invokes a
pseudo-boolean solver to find a minimum cost satisfying as-
signment. If one exists it is returned by the solver, and from
it we extract and return the minimum cost valid installation
profile containing P and p. If no such assignment exists we
conclude that it is not possible to safely install p.

An alternative approach to solving the Minimum Install
Problem is to reduce the pseudo-boolean constraints into an

6

Algorithm 3 UnInstall(R,P , p,Cost)
P0 := P
f := Distrib(R)
X ′ := ∅
repeat

X := {xp} ∪ {xp′ | p′ ∈ P}
X ′ := ConflictSatSolve(X, f)
P := P − {xp′ | xp′ ∈ X ′}

until X ′ = ∅
Pc := P0 − P
Cost ′(p) := if p ∈ Pc then − Cost(p) else 0
P ′ := MinInstall(R,P , p,Cost ′)
return Pc − P ′

ILP problem using a standard translation [8]. One can then
use an off-the-shelf ILP solver to find the minimum P ′.

3.3 The Uninstall Problem
In many configurations a new package cannot be installed
because of conflicting dependencies with other packages al-
ready installed on the system. In this case, we must first
uninstall the packages prohibiting the installation before at-
tempting to install the new package. We would like to find
the optimal set of packages that must be removed in order
to make the new package installable.

Problem 3 (Uninstall Problem) Given a distribution R,
an installation profile P , a new package p, and a cost func-
tion Cost , find a set of packages P ′ with a minimum value
of

∑
p∈P ′ Cost(p), such that p can be installed on P −P ′.

Once a minimum P ′ is found we can remove the pack-
ages in P ′ and obtain an installation profile on which p can
be installed. We can then apply the algorithm MinInstall to
determine the best way to install the new package p on the
system.

There are several candidate cost functions for the unin-
stall problem. By assigning all installed packages a constant
non-zero cost we can ensure that the least number of in-
stalled packages is removed. Another function could assign
higher costs to more important or more popular packages,
thereby ensuring that these packages do not get uninstalled
unnecessarily.

To solve the Uninstall Problem, we use an enhanced SAT
solver that tells us which of the currently installed packages
in P are prohibiting the installation of p. This enhanced
SAT solver computes an overapproximation of the packages
that must be removed. We then use the previously described
MinInstall procedure to prune the overapproximation to ob-
tain a minimal uninstall set P ′.

The enhanced SAT solver we make use of is imple-
mented by a procedure called ConflictSatSolve. Given a set
X of propositional variables and a propositional formula f ,

the procedure ConflictSatSolve(X, f) returns the empty set
∅ if the formula

∧
x∈X x ∧ f is satisfiable, and otherwise

returns a minimal set X ′ ⊆ X such that
∧

x∈X′ x∧f is also
unsatisfiable. The ConflictSatSolve procedure can be im-
plemented using well-known algorithms. In particular, one
can easily extend any DPLL-based SAT solver to produce
resolution proofs of unsatisfiability [7, 17]. The set X ′ can
then be computed from the resolution proof, by collecting
the set of leaves in the proof tree that correspond to literals
in X . In our setting, the literals correspond to packages –
the set X will be the set of installed packages together with
the new package p that is to be installed. In this context, the
set X ′ returned by ConflictSatSolve will be the transitive
conflict packages prohibiting the installation of p.

Our algorithm UnInstall for solving the Uninstall Prob-
lem is shown in Algorithm 3. First, we save the cur-
rently installed packages in P0. Second, we call the
ConflictSatSolve procedure with the constraints generated
by the current packages P and the distribution. If the con-
straints are not satisfiable, we remove the transitive con-
flict packages from the current set P , and repeat until all
constraints are satisfiable (there are no transitive conflict
packages), i.e., until p can be installed with the remain-
ing packages. At this point, all potentially transitively con-
flicting packages have been removed from P , and the over-
approximated set of conflict packages is Pc = P0 − P .
Third, we call MinInstall starting with the installation pro-
file P to determine what packages can be “added back” to
P (and therefore were not absolutely necessary to remove).
For this step we use a modified cost function where the tran-
sitive conflict packages Pc have the negation of their orig-
inal cost and all other packages have cost 0. The negation
causes MinInstall to in fact maximize the transitive conflict
packages that are added back to P . Thus, the transitive con-
flict packages not added back by MinInstall are the mini-
mum set of packages that must be removed.

Another way to attack the uninstall problem is avoid the
loop in Algorithm 3 by setting Pc to the set of all packages
in P0, and then running MinInstall. However, we choose
to use ConflictSatSolve to find the transitively conflicting
packages for two reasons. First, the set is typically quite
small, and so the optimizing problem sent to MinInstall is
relatively simple, which may improve solve time. Second,
with our current formulation it is easy to make the algo-
rithm interactive, where at each iteration of the loop the user
can be asked which of the transitively conflicting packages
in X ′ she would like to be removed. We can then remove
only those packages from P in the next line. This approach,
which we leave for future work, allows the user more con-
trol over which packages should be removed, and has the
flexibility of not requiring that a suitable cost function be
designed a priori.

7

Algorithm 4 Opium(R,P ,CostI ,CostU , p)
R := Slice(R,P ∪ {p})
P ′ := MinInstall(R,P , p,CostI)
if P ′ 6= IMPOSSIBLE then

Install the packages P ′

else
Uninstall the packages UnInstall(R,P , p,CostU)
Install the packages MinInstall(R,P , p,CostI)

end if

3.4 Putting it all together: Opium

Algorithm 4 shows how we combine the above algorithms
in our Opium tool, which takes as input a distribution R,
an installation profile P , an install cost function CostI , an
uninstall cost function CostU , and a new package p that the
user wishes to install, and updates the user’s system so that
it has a valid installation profile containing p.

First, we slice the distribution rules with respect to the
given installation profile and the package to be installed.
Intuitively, the slicing procedure returns the subset of the
input distribution rules that are relevant to the input pack-
ages. This procedure includes the rules of the input pack-
ages and transitively includes the rules of the packages the
input package depends on or conflicts with. For example,
slicing the distribution shown in Figure 2 with respect to
the package a, yields the package rules for all the packages
except y. Without slicing, the times taken by Opium are
about 15 times greater, taking several minutes to solve one
problem, rather than several seconds.

Then, we call MinInstall to determine whether (without
removing any existing packages) the new package can be in-
stalled. If there are no conflicts, i.e. MinInstall returns a set
of new packages with the minimum install cost, we down-
load and install the new packages and return. If instead
MinInstall returns IMPOSSIBLE, then we call UnInstall to
find the set of packages with the minimum uninstall cost,
which are then removed from the system. Finally, we call
MinInstall again. This time it is guaranteed to find a set of
new packages including p, which we download and install
on the system. A simpler algorithm is to first call UnInstall
as it will return the empty set if there are no conflicts. We
choose to optimistically call MinInstall first as the majority
of install attempts do not require uninstalls.

4 Evaluation

To evaluate the practicality of our algorithms we perform
a comparative study of Opium versus Debian’s package
installer, apt-get. The goal of this study was to quan-
tify three measures: the running time of Opium versus
apt-get, the amount of benefit provided by the complete-

ness of Opium, and the amount of benefit provided by the
minimization capabilities of Opium.

To perform our evaluation we took 600 traces of real
world installation attempts collected by the servers at Lin-
spire, Inc. Each one of the 600 traces corresponds to a
particular end user performing a series of installation at-
tempts. Each installation attempt is a request to install a
given package, which may in turn install/remove a variety of
depending/conflicting packages. The traces were selected
randomly from all available traces where the total number
of installation attempts fell within two standard deviations
of the mean. The 600 traces correspond to a total of 52,668
installation attempts, which amounts to an average of about
87 installation attempts per user.

We ran each installation attempt 5 different ways. First,
we used Debian’s apt-get, which was the baseline for our
comparison. Then we ran each installation attempt using
Opium in four different configurations, varying the back-
end (either a pseudo-boolean solver or an ILP solver), and
the objective function (either minimize download size or
maximize the popularity of installed packages). These ex-
periments took about 24 hours to run using 100 nodes of the
FWGrid cluster [2].

4.1 Runtime

Figure 4.1 shows the runtime of Opium normalized to the
runtime of apt-get. To get a sense of the scale, the aver-
age runtime of apt-get was 3.14 seconds, and this shows
up as a bar of height 1 in Figure 4.1. The rightmost eight
bars of Figure 4.1 show the runtimes for Opium. The la-
bels for these bars use the following abbreviations: (1) NC:
no conflicts occurred versus C: conflicts occurred, (2) ILP:
ILP solver was used versus PB: pseudo-boolean solver was
used, (3) Pop: the objective function maximized popularity
versus Size: the objective function minimized total down-
load size.

Each bar shows inside of it the various contributors to
the runtime: (1) Distribution read: time to read the distri-
bution from disk into memory, (2) Slicing: time to perform
the slicing optimization described in Section 3.4, (3) Ini-
tial solve: time to perform the first call to MinInstall in the
Opium algorithm from Section 3.4, (4) IO: time to write
the pseudo-boolean or ILP problems to disk for the solvers
to read, and time to read the results back from the solvers,
(5) Conflict resolution: time to perform conflict resolution,
which is the call to UnInstall in the Opium algorithm, (6)
Second solve: time to run the second call to MinInstall in
the Opium algorithm.

There are several important points to note in Figure 4.1:
• In the cases where there is no conflict resolution, which

account for 84.3% of the install attempts, Opium is
about 3.5 times slower than apt-get. In the remaining

8

Figure 6: Runtime of apt-get vs. Opium

cases Opium is about 6 times slower than apt-get.
Although this may seem high, when taking into account
the total time to run the installer and to download the
required packages, Opium is on average 34.0% slower
than apt-get assuming a 300kBps cable modem con-
nection, 11.2% slower on a 100kBps DSL line, and
0.2% faster on a 10kBps dial-up modem (Opium is able
to run faster on a modem because it optimizes for num-
ber of bytes downloaded, and so it downloads less bytes
than apt-get).

• The dominant components of the Opium runtime are
reading the distribution, performing the slicing opti-
mization, and performing conflict resolution. The ac-
tual time to run Pueblo or GLPK accounts for only a
very small proportion of the total runtime of Opium.

• The Pueblo solver runs about twice as fast as the
GLPK solver, and it even runs slightly faster than the
apt-get backtracking solving algorithm.

• The runtimes of install attempts that optimize size are
very similar to the runtimes for attempts that optimize
popularity, which is an indicator that runtimes are un-
likely to depend significantly on the objective function.

There are further opportunities for optimizing the per-

formance of Opium that we have not yet explored. One
of them is the time it takes to read a distribution. Because
our parser implementation in Opium is naive, Opium takes
about 3 times longer than apt-get to read and load a
distribution in memory, something that can be fixed with
further tuning. Further, the ConflictSatSolve operation is
currently implemented in a separate theorem prover, which
incurs additional overhead. As ConflictSatSolve is called
repeatedly on very similar problems, using an incremental
SAT solver for implementing ConflictSatSolve would likely
have a dramatic impact on the performance of conflict res-
olution.

4.2 Completeness

To quantify the benefit provided by Opium’s completeness
we look at the number of times that apt-get fails to find a
way of installing a package when in fact there is a solution
(which Opium is guaranteed to find because it is complete).
Out of the 52,668 install attempts, apt-get was not able
to find a solution 357 times, and of these 357 cases, Opium
was able to find a solution 322 times. The remaining 35
cases, on which both apt-get and Opium fail, are indica-
tions of bugs in the distribution (for example, one package
in the distribution depending on another one that is not in
the distribution).

These numbers show that apt-get fails to find a solu-
tion when one exists in about 0.61% of install attempts. This
is not a large error rate, but one has to remember that users
perform many install attempts over the lifetime of their sys-
tem. When looking at entire traces, 23.3% of the 600 traces
encountered a problem due to the incompleteness limitation
of apt-get. These numbers indicate that the complete-
ness of Opium has the potential to improve the end-user
experience for a large fraction of Debian users.

4.3 Minimization

We first evaluate the impact of Opium’s ability to mini-
mize the number of packages that are removed from the
system. For our traces, Opium removed less packages
than apt-get in 209 cases out of the 52,311 install at-
tempts where apt-get succeeded. This is a small per-
centage of all install attempts but the impact in those cases
can be significant. In 9 cases apt-get removed 10 or
more packages than was necessary, with the worst of these
cases being the example mentioned in the introduction
where apt-get removed 61 packages, including the ker-
nel, whereas Opium only removed 21 packages, none of
which was the kernel.

We also evaluate the benefits of Opium’s ability to min-
imize the number of downloaded bytes. In about 4.4%
of the installation attempts where apt-get succeeded

9

Opium found a better solution than apt-get. Although
this is again only a small percentage of all install attempts,
when there is a difference between the optimal solution and
the apt-get solution that difference is on average about
2MB. There are also 7 install attempts in which Opium beat
apt-get by over 100MB, and one case in which Opium
beat apt-get by 129MB. In about 0.2% of the installation
attempts apt-get finds a smaller solution than Opium, by
an average of about 1.6MB. This happens despite Opium’s
optimality because apt-get may remove more packages
than necessary, and once these additional packages have
been removed apt-get’s solution can be smaller.

Another interesting measure to look at is how many
downloaded bytes Opium saves over entire user traces.
Summing the downloaded bytes over entire traces, we find
that Opium beats apt-get on 95.9% of the traces by
an average of 7.7MB (with a maximum of 185MB), and
it matches or does better than apt-get on 98.4% of all
traces. The most apt-get beats Opium by over a full
trace is 21MB, but it does so by removing 12 more pack-
ages than necessary.

5 Related Work
One line of work that is related to ours is the research done
by the WP2 group inside the EDOS project. The broad goal
of this group is to address issues relating to dependency
management on the repository side [10], whereas our fo-
cus has been on the client side. In the context of helping
repository builders, the WP2 group has implemented a tool
called debcheck [10] that uses a SAT solver to check that
a repository does not contain broken packages (i.e. pack-
ages that cannot be installed). As the authors of debcheck
write in [10], the problem of optimizing the installation of
packages on a user machine, which Opium solves, “is a
task radically different, and in principle much more diffi-
cult than verifying that a repository does not contain broken
packages.” In particular, our paper contributes beyond the
work on debcheck in three ways, all of which are motivated
by our focus on the client side of the problem: (1) our work
adds the extra dimension of finding optimal solutions with
respect to an objective function, (2) in addition to solving
the Install Problem, we also optimally solve the Uninstall
Problem, (3) we perform a comparative study of our tool
against apt-get on real-world installation attempts.

Another project that is related to ours is the Smart Pack-
age Manager [12], which attempts to be complete and to
find the best solution given a user policy. There is little
documentation about the techniques used in Smart, and our
investigation of the source code shows that it enumerates
all possible solutions, which, as pointed out in [10], is pro-
hibitively expensive.

More broadly, our work is also related to research

projects that process dependencies automatically. In the
context of static component-based software linking, tools
exist for checking that dependencies between a given set
of components are met, for example using typed inter-
faces [6, 5, 9]. Tools also exist for analyzing dependencies
to optimize, debug, and test programs [15, 16]. In contrast
to these projects that check or analyze dependencies, our
goal is to discover an optimal set of components that meet
certain dependency requirements.

References
[1] fink. http://fink.sourceforge.net.
[2] FWGrid Project. http://fwgrid.ucsd.edu.
[3] GLPK (GNU Linear Programming Kit). http://www.

gnu.org/software/glpk.
[4] Yum: Yellow dog Updater, Modified. http://linux.

duke.edu/projects/yum.
[5] J. Aldrich, C. Chambers, and D. Notkin. Archjava: connect-

ing software architecture to implementation. In ICSE, pages
187–197, 2002.

[6] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In PLDI 02:
Programming Language Design and Implementation, pages
234–245. ACM, 2002.

[7] A. V. Gelder. Extracting (easily) checkable proofs from a
satisfiability solver that employs both preorder and postorder
resolution. In 7th International Symposium on Artificial In-
telligence and Mathematics(AMAI), 2002.

[8] J. N. Hooker. Generalized resolution and cutting planes. An-
nals of Operations Research, 12(1):217 – 239, 1988.

[9] D. B. MacQueen. Modules for standard ml. In LISP and
Functional Programming, pages 198–207, 1984.

[10] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Du-
rak, X. Leroy, and R. Treinen. Managing the complexity
of large free and open source package-based software distri-
butions. In Proceedings of the International Conference on
Automated Software Engineering (ASE 06), 2006.

[11] K. L. McMillan. An interpolating theorem prover. In
TACAS: Tools and Algorithms for the Construction and
Analysis of Systems, pages 16–30, 2004.

[12] G. Niemeyer. Smart package manager. http://labix.
org/smart, 2006.

[13] H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-
boolean sat solver. Journal on Satisfiability, Boolean Mod-
eling and Computation, 2:61–96, 2006.

[14] G. N. Silva. APT Howto. http://www.debian.org/
doc/manuals/apt-howto, 2005.

[15] J. A. Stafford and A. L.Wolf. Architecture-level dependence
analysis in support of software maintenance. In Proceedings
of the third international workshop on Software architecture
(ISAW 98), 1998.

[16] M. Vieira and D. Richardson. Analyzing dependencies in
large component-based systems. In Proceedings of the In-
ternational Conference of Automated Software Engineering
(ASE 02), 2002.

[17] L. Zhang and S. Malik. Validating sat solvers using an in-
dependent resolution-based checker: Practical implementa-
tions and other applications. In DATE: Design Automation
and Test Europe, pages 10880–10885, 2003.

10

