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Preface

This Ph.D. thesis has been carried out in the period from 1999 till 2002. The work is or-
ganized as follows. After an introduction, concerning the goals and key ideas of this work,
we review the density functional theory. This is followed by a look at how the electronic
structure calculations are performed, in particular the LMTO method and the tetrahedron
method. Next, a chapter is devoted to the calculation of maximally localized Wannier func-
tions using a method proposed by Marzari and Vanderbilt. We then focus on the second
quantized Hamiltonian, its matrix elements in Wannier representation and their evaluation
within the atomic sphere approximation. By then, we will have all the pieces to perform
many-particle calculations using this second quantized Hamiltonian with its matrix ele-
ments from first-principle, which will be dealt with in chapter 6. Finally, we present results
for the 3d transition metals iron, cobalt, nickel and copper.
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Chapter 1

Introduction

An interesting branch of solid state physics is dealing with bulk properties of materials. Ex-
perimentally, a number of these properties, e.g. (mass) density, binding energy (or ionization
energy), bulk modulus, are easily accessible. During the past few decades, powerful numer-
ical methods have been developed for the ab-initio (first-principles) calculation of electronic
ground state properties of crystalline solids. These are solids with a periodic crystal struc-
ture to which a large number of materials, in particular metals, on a microscopic scale,
condense.

In most of these methods, density functional theory (DFT) [1] has been used to treat the
electron-electron Coulomb repulsion. Within DFT, the so-called local density approxima-
tion (LDA) [2], or the local spin density approximation (LSDA) for magnetic systems, is
commonly used for the exchange-correlation potential. For a wide range of materials, many
ground state properties, such as crystal structure, lattice constant, crystal anharmonicity [3],
are in good agreement with experiment. Despite its success, DFT has its limitations. The
band gap of semiconductors is not properly reproduced, for instance. Furthermore, for sys-
tems such as high-temperature superconductors, heavy fermion materials, transition metal
oxides and 3d itinerant magnets, i.e. for systems in which the Fermi level falls into a region
of narrow energy bands, the LDA is usually not sufficient for an accurate description. Even
for pure nickel, differences between LSDA and the experiment exist. There are at least two
inconsistencies with the photoemission [4] spectra of ferromagnetic nickel [5]: (i) The mea-
sured width of the (occupied) part of the 3d-band is about 30% narrower than the calculated
one. (ii) The LSDA density of states does not show the so-called “Ni 6 eV satellite”, i.e.
a peak about 6 eV below the Fermi level. Nevertheless, LSDA predicts the spin magnetic
moment of Ni very accurately. It is generally accepted that the problem for these materials
are the strong electronic correlations that are responsible for their electronic properties.

Usually, one approaches the description of strongly correlated systems differently. Instead
of DFT, a model Hamiltonian, such as the Hubbard model [6] and its multi-band general-
izations, is the starting point for considerations. The model Hamiltonian approach is more
general and powerful since there exist systematic theoretical methods to investigate the
many-body problem. But in these models, the Coulomb interaction matrix elements and also
the one-particle hopping matrix elements (that determine the un-perturbed band structure)
are usually treated as free, adjustable parameters. That is, they are not known from “first

6



1. Introduction 7

principles” for the given material. The uncertainty in the choice of the model parameters
and the technical complexity of the correlation problem itself prevent the model approach
from being a reliable and flexible tool for studying real materials. Nevertheless, Coulomb
correlations can be studied within reliable many-body approximations that go beyond the
Hartree-Fock approximation.

Both the ab-initio LDA and the many-body model-Hamiltonian methods based on Hubbard-
like models have their merits, but until rather recently, they have been almost separate and
complementary approaches. In view of the power of each, a combination of these methods
is desirable, and, in fact, during the last few years there have been some attempts in this
direction (see Refs. [7-18]). All of these recent developments add local screened Coulomb
(Hubbard) correlations U between localized orbitals to the un-correlated (one-particle) part
of the Hamiltonian obtained from an ab-initio LDA band structure calculation. They dif-
fer in how the correlation part is handled, however. In the earliest attempts, the LDA+U
method [7] uses essentially a static mean-field-like (or Hubbard-I-like) approximation for
the correlation. The simplest approximation beyond Hartree-Fock, i.e. second order pertur-
bation theory (SOPT) in U , was used [8, 9, 12, 16, 18] to study the electronic properties of
3d-systems (like Fe and Ni) and heavy fermion systems (like UPt3). The LDA++ approach
[11, 13, 14] has a similar strategy, but uses other many-body approximations to treat the
correlation problem, namely either the fluctuation exchange approximation (FLEX) [19] or
the dynamical mean field theory (DMFT) [20]. Some of the other many-body treatments
[10, 15, 17] also use DMFT, which is based on the limit of large-dimension (d → ∞) ap-
proximation for correlated lattice electrons (see Ref. [21]). Within DMFT, the self-energy
becomes local, i.e. independent of momentum k, which allows a mapping of the lattice
problem onto an effective impurity model. The LDA+DMFT treatments [13-17] mentioned
above differ in the many-body method. They make use of the effective impurity problem,
namely quantum Monte Carlo (QMC) [17], the non-crossing approximation (NCA) [15] or
iterated perturbation theory (IPT) [10].

However, all these approaches, including the LDA+U, have in common that they still in-
troduce a Hubbard-U as an additional parameter, and hence are not real first-principles
treatments. Although they use an LDA ab-initio method to obtain a realistic band structure,
i.e. single-particle properties, Coulomb matrix elements for any particular material are not
known, and the Hubbard-U remains an adjustable parameter.

One can obtain estimates on the magnitude of U either from experiment (high-energy spec-
troscopy) or from the constrained LDA method (Refs. [7,22-27]). Within the latter method,
one adds the constraint that the electron occupation number for the correlated bands is fixed
to a given number through a Lagrange parameter.1 One can then use LDA to calculate the
ground state energy for different occupations of the correlated states, and the difference be-
tween the energy for double and single occupation is an estimate for the Hubbard-U . This
method has the advantage that effects of screening are already somehow included. On the
other hand, there are usually several bands and many interaction matrix elements (on-site,
intra-band, inter-band, direct, exchange, inter-site, etc.) that have different magnitudes, and
the constrained LDA can only give some average value for these various Coulomb matrix
elements and not the individual ab-initio parameters, i.e. the Coulomb matrix elements.

1Apart from the constraint that the (effective) one-particle wave functions are normalized.



8 1. Introduction

We pursue a different approach [28], namely, the direct ab-initio calculation of single-
particle (hopping, tight-binding) and two-particle (Coulomb) interaction matrix elements
for first-principles Wannier functions [29, 30]. These (orthogonal) Wannier functions serve
as a minimal (localized) basis for a many-body multi-band Hamiltonian. By minimal we
mean that the basis contains only the 4s, 4p and 3d orbitals (customized to the problem at
hand). We then treat the many-body Hamiltonian in the Hartree-Fock approximation. This
is the main idea, which we will now describe in more detail.

The (one-particle) Hamiltonian from which we construct the Wannier functions can be re-
garded as an auxiliary Hamiltonian, since its purpose is merely to construct an orthogonal
basis for the description of the physical Hamiltonian in second quantization. In order to
construct these Wannier functions, we start from a standard electronic band structure cal-
culation, namely we use the linearized muffin-tin orbital (LMTO) method [31, 32] within
the atomic sphere approximation (ASA). Apart from the eigenvalues, i.e. the one-particle
energy bands, the band structure calculation yields the energy eigenstates, i.e. the Bloch
functions, for this auxiliary Hamiltonian. When chosen properly, these 4s, 4p and 3d Bloch
states form an adequate basis of the one-particle Hilbert space. The Wannier functions are
closely related to the Bloch functions via a unitary transformation, and, thus, span the same
one-particle space as the Bloch functions. However, Wannier functions are not unique, since
the phases of the Bloch functions are undetermined.

The non-uniqueness (gauge freedom) of Wannier functions can be used to construct “max-
imally localized Wannier functions” which are just Wannier functions with a special gauge
that makes them optimally localized according to some criterion. To determine this special
gauge, we use a method proposed by Marzari and Vanderbilt [33]. A proper localization of
the Wannier functions is important, because only then do the standard assumptions of the
model treatments hold.

Next, in order to describe the physical Hamiltonian in second quantization, we have devel-
oped methods to evaluate the required hopping and Coulomb matrix elements. The eval-
uation of hopping matrix elements is not very complicated, and takes advantage of two
features of our Wannier functions, i.e. the spherical expansion within each muffin-tin and
the (with respect to energy) linearized nature of the wave functions. These are features of the
LMTO-ASA Bloch functions which are passed on to the Wannier functions. Once the hop-
ping matrix is determined, we can (as a check) re-evaluate the band structure and compare
it with the original energy bands, i.e. the LMTO energy eigenvalues.

We propose two different methods to calculate Coulomb matrix elements from Wannier
functions. The first method, which we call “spherical expansion method”, uses the LMTO-
ASA properties of the wave functions and can be used to evaluate the Coulomb integrals
efficiently, similarly to what was done in Ref. [34]. The second method, which we call “FFT
method”, uses the fast Fourier transformation (FFT). It does not rely on the property of the
wave functions being linear and is therefore more general. Both methods are completely
independent of each other. Thus, having achieved good agreement of their results, we have
reliable Coulomb matrix elements which are (for Wannier states with mainly 3d-character)
on the magnitude of 20 to 25 eV for direct on-site Coulomb matrix elements for Fe, Co, Ni
and Cu. Nearest-neighbor off-site matrix elements are found to be about 6 eV and on-site
exchange matrix elements are about 1 eV. These Hubbard-U ’s are extremely large compared
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to the U ’s commonly used in model Hamiltonians, and we will discuss reasons for this
discrepancy.

Having determined the first-principles matrix elements, we turn to the treatment of the
many-body Hamiltonian in the Hartree-Fock approximation. First, however, it is instruc-
tive to consider the Hartree approximation which can also easily be performed within DFT
(omitting the exchange-correlation). To do this, we need to evaluate the hopping matrix el-
ements of the (one-particle) Hamiltonian which contains no Coulomb repulsion among the
valence electrons, since we want to treat these interactions on the second quantized level. It
turns out that the choice of our auxiliary Hamiltonian, which determines the minimal basis
set consisting of maximally localized Wannier functions, is crucial. The result of the actual
Hartree-Fock calculation is an effective hopping matrix from which the band structure can
be determined.

To illustrate the methods and steps involved, we perform actual calculations for a well un-
derstood system, copper, although this material is not a strongly correlated system, it has
almost completely filled (narrow) 3d-bands. We give results for the ferromagnetic 3d tran-
sition metals iron, cobalt and nickel (as well as for copper), since these are relatively simple
systems with only one atom per unit cell.

We close this work with a discussion of our results, in particular, we will discuss the large
magnitude of our Hubbard-U ’s. Also, we discuss how to extend and further apply the current
approach.



Chapter 2

Density Functional Theory

Since the mid 1970’s, the density functional theory (DFT) has become a very powerful
tool for ab-initio calculations in chemistry and solid state physics. Today, the DFT is a
standard method in many fields, and Walter Kohn received the Nobel prize for chemistry
in 1998 for his work in this area. Within the framework of DFT, the so-called local density
approximation (LDA) is very commonly used. However, despite its success, the LDA is
based on assumptions that are not easy to justify, and it is well known that in some cases
the LDA gives wrong results. We will first take a look at the DFT in general before turning
to the LDA.

A system of many interacting (non-relativistic) fermions is described by the Hamiltonian1

H = T + V +W =

Ne∑

i=1

p2
i

2m
+

Ne∑

i=1

vext(ri) +
∑

i>j

e2

|ri − rj |
, (2.1)

where Ne is the number of electrons and vext is an external potential caused by the nuclei in
the molecule or solid. We are interested in the ground state of (2.1). Instead of determining
the complicated many-particle ground state Ψ, we consider the electronic density of the
ground state:

n(r) =

∫
d3r1 . . .

∫
d3rNeΨ

∗(r1, . . . , rNe)

Ne∑

i=1

δ(r − ri)Ψ(r1, . . . , rNe) (2.2)

Equations (2.1) and (2.2) define the following maps:2

C : vext → Ψ D : Ψ → n (2.3)

The first map C is surjective by construction: Ψ contains no element which is not associated
with some element of vext. The second map D of the ground state wave functions on the
ground state density n is trivially surjective. Hohenberg and Kohn have shown that the

1The non-interacting part of the Hamiltonian is H0 = T + V and the interacting part is HW or just W . We
prefer to use the letter W (German: Wechselwirkung) instead of I (interaction).

2For the sake of simplicity, we restrict ourselves to the case of non-degenerate ground states.
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2. Density Functional Theory 11

maps C and D are also injective (one to one) and thus fully invertible.3 . This means that the
external potential vext and the ground state Ψ are uniquely determined by the ground state
density n. Hence the energy functional

E[n] = 〈Ψ|H|Ψ〉 = F [n] +

∫
d3r vext(r)n(r) , F [n] = 〈Ψ|T +W |Ψ〉 (2.4)

is a unique functional of the density n. Furthermore, F is universal in the sense that it does
not depend on the external potential. It may be separated:

F [n] =
1

2

∫
d3r

∫
d3r′

e2n(r)n(r′)

|r− r′| +G[n] (2.5)

Hohenberg and Kohn have shown that E[n] assumes its minimal value, the ground state
energy, for the correct ground state density. If the functional G[n] were known, it would be
relatively simple to use the variational principle to determine the ground state energy and
density for any given external potential. Unfortunately, the functional G[n] (and thus E[n])
is not known, and the full complexity of the many-electron problem is associated with its
determination.

2.1 Local Density Approximation

The theorems in the preceeding section apply equally to the case of non-interacting elec-
trons. Consider an auxiliary system with no Coulomb interaction described by the Hamilto-
nian:

HS = T + VS (2.6)

The ground state ΨS of this single-particle problem is simply a Slater determinant obtained
by populating the lowest one-electron orbitals ψi defined by the Schrödinger equation:

(
−∇2 + vS(r)

)
ψi(r) = εiψi(r) (2.7)

Here and throughout, we use atomic Rydberg units, see Appendix A, in which ~/2m = 1.
According to the theorem of Hohenberg and Kohn, there exists a unique energy functional

ES [n] = TS [n] +

∫
d3r vS(r)n(r) , (2.8)

for which δES [n] = 0 yields the exact ground state density of HS . The central assumption
in establishing the Kohn-Sham equations is that for every interacting system there exists a
local single-particle potential vS(r) such that the exact ground state density n of the inter-
acting system equals the ground state density of the auxiliary problem:

n(r) = nS(r) =
Ne∑

i=1

|ψi(r)|2 (2.9)

3This is known as the theorem of Hohenberg and Kohn. For a proof see for example Ref. [35]
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We are looking for the potential for which (2.9) is the density of the interacting system. To
this end, we write:

G[n] = TS [n] +Exc[n] , (2.10)

where TS [n] is the kinetic energy functional of the non-interacting electrons:

TS [n] ≡ 〈ΨS |T |ΨS〉 =

Ne∑

i=1

∫
d3rψ∗

i (r)
(
−∇2

)
ψi(r) (2.11)

We have isolated two terms in F [n], the Hartree term in (2.5) and the kinetic energy (2.11),
which play a decisive role in the single-particle picture, and which are presumably also
the dominant terms in the interacting system. What remains is Exc[n], which describes the
difference between the true kinetic energy and that of the non-interacting system, plus the
difference between the true interaction energy and that of the Hartree contribution. Since
these corrections are due to exchange and correlation, it is called the exchange-correlation
(XC) energy functional.

Now, we introduce the local density approximation (LDA) itself, which assumes corrections
due to exchange and correlation to be local:

Exc[n] =

∫
d3r n(r)εxc(n(r)) (2.12)

This approximation is exact in the limit of slowly varying densities, and εxc(n) is obtained
from a homogeneous electron gas with density n. Various estimates for εxc(n) have been
proposed. In this work, we will use the estimate by Barth and Hedin [36], see Eq. (C.19) in
the appendix C.3.

Using the LDA and collecting the above assumptions, our energy functional can be written
as:

E[n] = 〈ΨS |T |ΨS〉+

∫
d3r

[
1

2

∫
d3r′

e2n(r′)

|r − r′| + vext(r) + εxc(n(r))

]
n(r) (2.13)

A minimization with respect to the density n (under the constraint that the one-particle wave
functions are normalized) leads to the well-known Kohn-Sham equations:

(
−∇2 +

∫
d3r′

e2n(r′)

|r − r′| + vext(r) + vxc(n(r))

)
ψi(r) = εiψi(r) (2.14)

By comparison with (2.7), we see that the non-interacting electron moves in the effective
potential:

vS(r) =

∫
d3r′

e2n(r′)

|r − r′| + vext(r) + vxc(n(r)) (2.15)

The first term is the “Hartree term”, caused by the classical electron-electron repulsion, the
second term is the external potential which is caused by the nuclei (plus external fields).
The third term is called “exchange-correlation potential”, this term is given by

vxc(n(r)) =
δExc[n]

δn(r)
. (2.16)
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2.2 Self Consistency

The Kohn-Sham equations (2.14) have to be solved self-consistently, since they depend on
the density n(r) which itself depends on the effective one-electron wave functions ψi(r) via
equation (2.9). The self-consistency cycle is straightforward and fairly simple, we review
its steps merely for later reference.

1. Initial guess for the density n(r).

2. Calculate the effective potential vS(r) using (2.15).

3. Solve the effective Schrödinger equation (2.7).

4. Recalculate a density ñ(r) using (2.9).

5. Compare ñ(r) with n(r). If a criterion for convergence is satisfied, then exit the cycle.

6. Set n(r) to αñ(r) + (1 − α)n(r) and go back to step 2.

A few remarks should be made about some of these steps:

i.) The initial density in step 1 can be obtained from solving a one-electron Schrödinger
equation for the external potential.

ii.) For the crystal, step 3 requires the solution of the band problem (see chapter 3).

iii.) The number of electrons in our system enters (2.9) in step 4, because only the lowest
one-particle states are populated.

iv.) Since exact self consistency will never be achieved numerically, we have to exit the
cycle when reasonable convergence is achieved. We found that a good criterion for
convergence is

∫
d3r |n(r) − ñ(r)| < ε where ε is a small parameter.

v.) Step 6 is known as the Broyden mixing scheme.

vi.) Whenever a (pure) Hartree calculation is done, we perform exactly these steps just
leaving out the exchange-correlation term in the relevant equations.

vii.) The cycle is easily extended to the spin polarized case, see section 2.5.

2.3 Total Energy

The LDA total energy functional is given by (2.13) and it assumes its minimal value for the
self-consistent density achieved by going through the self-consistency cycle:

E[n] = 〈Ψ|T |Ψ〉 +

∫
d3r

[
1

2

∫
d3r′

e2n(r′)

|r− r′| + vext(r) + εxc(n(r))

]
n(r) (2.17)
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Figure 2.1: Total energy of the valence electrons per atom for FCC copper
(solid line) calculated as a function of x. The dashed line shows the badly
calculated total energy. Here, v0 is taken to be the potential for no interaction
among the valence electrons (3.48).

Where the kinetic energy (2.11) term can be written (from (2.7) and (2.9) ) as:

〈Ψ|T |Ψ〉 =

Ne∑

i=1

εi −
∫
d3r vS(r)n(r) (2.18)

The total energy should be calculated using these two equations, i.e. as the sum of one-
particle energies for the non-interacting system: The sum of the kinetic energies plus the
sum of the potential energies corrected for double counting. One should not try to use (2.15)
to combine terms in (2.18) with terms in (2.17). The reason for this is a little subtile and
therefore we now wish to illustrate the situation in the following example.

2.3.1 Illustration

Let us suppose we have found the exact self-consistent density and thus the self-consistent
effective LDA potential (2.15) which we call vLDA. Further, we have a potential v0 6=
vLDA which is not a solution of the Kohn-Sham equations. Using these two potentials, we
introduce a potential which depends on a variable x

v(x) = (1 − x) v0 + x vLDA , (2.19)

so that v(1) = vLDA. First, we note that the evaluation of the total energy from v(x) re-
quires the re-evaluation of the Hartree term and the exchange-correlation energy in (2.17).
Using v(x) potential in (2.7), we obtain the one-particle energies εi and one-particle wave
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functions ψi; from (2.9) the density n; and from n, we evaluate the Hartree potential and
exchange-correlation energy. We now have all the pieces to evaluate the total energy E as
a function of x, and since v0 is not a solution of the Kohn-Sham equations, E(x) assumes
its minimal value at x = 1. Calculating the total energy correctly leads to the solid curve in
Fig. 2.1.

On the other hand, when we use (2.15) to combine terms in (2.18) with terms in (2.17),
we use (for instance) the re-evaluated Hartree term to evaluate the kinetic energy term. But
this is not consistent with the one-particle energies εi obtained from v(x), since for x 6= 1
the potential v(x) is no longer a solution of the Kohn-Sham equations, these re-evaluated
potentials are different from the ones included in (2.18). It is thus important to evaluate the
kinetic energy using the energy eigenvalues belonging to [+∇2 − v(x)], and the last term
in (2.17) should be evaluated using only the density (2.9).

The badly calculated total energy is also shown (as a function of x) in Fig. 2.1. Obviously,
something is wrong since there is no minimal value assumed at x = 1. However, at x = 1
this badly calculated energy is correct, but, as indicated earlier, exact self consistency is
never obtained numerically, thus x 6= 1. And since the badly calculated energy curve has
such a large slope, even an x very close to 1 will lead to a wrong result. As we shall see,
quite often the total energy is needed to high accuracy.

2.3.2 Universal Features of the Binding Energy

The universal features of the binding energy offer a way to compare our ab-initio total en-
ergy calculations with experimental data. This is an important task to be done since all
theory is based on experiment. Theoretical calculations have to be compared with experi-
mental data for several reasons:

i.) Most importantly, to see whether the basic laws of physics are valid. Here the law of
physics is quantum mechanics, a very well understood theory, which is not doubted
any more.

ii.) The assumptions made in the DFT can be proven to be reasonable or unreasonable for
the systems under consideration.

iii.) Numerical errors and accuracy in the calculations have to be checked.

Since this section is a test for our calculations, and not the main interest of this work, we
will keep the theory short. For detailed information concerning the theory and experimental
data, the reader is advised to read the excellent paper [3].

Ab-initio calculations for many different materials (including crystalline solids) have shown
that the binding energy as a function of the lattice parameter has the same form, once the
binding energy and the separation have been scaled:

E(S) = ∆E E∗(a∗) where a∗ =
S − SE

`
(2.20)
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Figure 2.2: Scaled binding energy for FCC copper (circles). The line is the
universal function (2.22).

Here, E(S) is the binding energy per atom, S is the Wigner-Seitz radius4 , and ∆E is the
equilibrium binding energy. The parameter a∗ is a scaled length determined by the equilib-
rium Wigner-Seitz radius SE and the length scale `. Because the function E(S) will always
have a minimum at SE , we chose:

E∗(0) = −1 E∗′(0) = 0 E∗′′(0) = 1 (2.21)

A universal function E∗(a∗) which obeys (2.21) and is in good agreement with the calcu-
lated curves is (see Ref. [3]):

E∗(a∗) = (−1 − a∗ − 0.05a∗3)e−a
∗

(2.22)

Now, the bulk modulus B, the ratio between the change in pressure P and the resulting
relative change in volume Ω, is related to the length scale ` by5

B ≡ −Ω
∂P

∂Ω

∣∣∣
ΩE

=
∆E

12πSE`2
, (2.23)

as can be seen by taking two derivatives of (2.20) and using (2.21).

Our own total energy calculations are scaled onto the curve (2.22) by adjusting the three
parameters SE , ∆E and `. This is done in Fig. 2.2 for FCC copper. As can be seen, our
binding curve reveals the universal feature (2.22) perfectly.6 Here, the three parameters

4See appendix A.
5Note that: P (Ω) = −∂E/∂Ω
6The mismatch can hardly be seen, however, note that this does not at all mean that our adjusted parameters

agree with experiment.
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Material Structure SE [Å] ` [Å] ∆E [eV]

Copper FCC 1.41 0.272 3.50

Cu 1.40 0.258 4.14

Aluminum FCC 1.58 0.336 3.34

Al 1.53 0.320 3.70

Silver FCC 1.60 0.269 2.96

Ag 1.61 0.240 2.75

Lithium BCC 1.72 0.553 1.65

Li 1.66 0.512 1.74

Iron BCC 1.41 0.274 4.29

Fe 1.37 0.274 7.78

Cobalt HEX 1.39 0.262 4.39

Co FCC 1.36 0.262 6.75

Nickel FCC 1.38 0.270 4.44

Ni 1.37 0.263 5.62

Table 2.1: Calculated and experimental values for the equilibrium Wigner-
Seitz radius SE , the length scale `, and the cohesive energy ∆E. For each
material, the first line shows experimental values (Ref. [3]) and the second line
shows our own result using the LMTO method for treating the valence elec-
trons up to d-orbitals (see chapter 3). We have treated Cobalt in the FCC crystal
structure.

were found to be: SE = 2.65a0, ` = 0.487a0 and ∆E = 0.304 Ryd. We are thus in a
position to calculate the lattice constant, the cohesive energy and the bulk modulus B from
first-principles and compare these results with experimental data. A comparison is shown
in Table 2.1 for different metals. Note that ` can be evaluated from experimental date using
the bulk modulus B and (2.23).

In this connection it should be mentioned that these calculations require a very accurate
evaluation of the (relative) total energy since, e.g. for copper, the total energy of the valence
electrons (per atom) for equilibrium (LDA) volume is -103.286115 Ryd but for a 1% volume
increase the energy is -103.286070 Ryd. This is an extremely small energy difference of just
45·10−6 Ryd, or a relative change of about 4 · 10−7. Hence, we have to be precise to at least
seven or eight digits.

Factors that contribute to the mismatch in Table 2.1 include:

i.) The local density approximation.

ii.) Use of the atomic sphere approximation (ASA), see section 3.2.

iii.) Use of the frozen core approximation, see chapter 3.
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iv.) We neglect the so-called Ewald correction [37] to the ASA which arises from Coulomb
interactions between the potential from the nuclei contained in the external potential.

v.) For Fe, Co and Ni, we have neglected spin-polarization.

It is remarkable that, despite these factors, the equilibrium volume (or SE) and the scaled
length `, which together provide a measure of the anharmonicity η ≡ SE/` of a crystal, are
predicted very well. However, the cohesive energy is predicted poorly, since the accuracy
required exceeds the absolute accuracy of the total energy LDA calculation, see Fig. 7.23.

2.4 Constrained LDA

The purpose of this section is to estimate the Hubbard U , defined as the Coulomb energy
cost to place two (in our case d) electrons at the same site. This is

Udd = E(Nd + 1) +E(Nd − 1) − 2E(Nd) . (2.24)

Here, E(Nd) is the ground state energy with Nd d-electrons. If we consider this energy
as a continuous function of Nd, where we constrain the value of Nd to be away from its
minimized (ground state) value, then the Hubbard U is given by:

Udd =
δ2E(Nd)

δN2
d

(2.25)

In order to evaluate E(Nd), we have applied the “constrained” LDA, proposed in Ref. [22].
In the “un-constrained” LDA described above, we have minimized the energy functional
(2.13) under the constraint that the one-particle wavefunctions are normalized. Explicitly:

δψi



E[n] −

Ne∑

j=1

εj

(∫
d3r|ψj(r)|2 − 1

)
 = 0 (2.26)

The result of this minimization are the Kohn-Sham equations (2.14). Constrained LDA is a
generalization of LDA where an additional constraint is taken into account by an additional
Lagrange parameter in (2.26). We are interested in a variation of the d-charge in transition
metals. Hence, the additional constraint is given by:

vd

(∫
d3rnd(r) −Nd

)
(2.27)

Here, nd(r) is the d-charge density which should be constrained to a total d-charge of Nd

electrons per unit cell. Inserting (2.27) into (2.26) and minimizing with respect to the density
n, we obtain Kohn-Sham equations with a modified potential:

vS(r) =

∫
d3r′

e2n(r′)

|r − r′| + vext(r) + vxc(n(r)) +

{
vd ` = 2

0 otherwise
(2.28)
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Figure 2.3: Lagrange parameter vd vs. relative d-occupation ∆Nd for copper
(solid line) and vd = −ηNd, where η = 17.6 eV (dashed line).

The extra constant potential vd only acts on the d-component of the wave functions and
accordingly controls the number of d-electrons. Within the LMTO method, this is accom-
plished by adding a constant potential, vd, when solving the radial Schrödinger equation for
` = 2. Physically, we can regard the potential vd as the “force” necessary to constrain the
system to the desired configuration. Instead of evaluating E(Nd) directly, we may as well
evaluate the energy difference to ground state energy E0 = E(N0

d ), by making use of the
Hellmann-Feynman (see Eq. (2) Ref. [22]) theorem:

dE(Nd)

dNd
= −vd(Nd) or ∆E(Nd) ≡ E(Nd) −E0 = −

Nd∫

N0
d

dN ′
dvd(N

′
d) (2.29)

Here, N 0
d is the number of d-electrons for the ground state. Hence the knowledge of vd(N ′

d)
is sufficient to evaluateE(Nd) and thus our estimate for the Hubbard-U (2.25). From (2.29),
we see that for the ground state the force vd(N0

d ) vanishes, since E(Nd) assumes a min-
imum for the ground state. Moreover, for small charge deviations around N 0

d , the force
vd(Nd) will be proportional to the deviation ∆Nd:

vd(Nd) = −η∆Nd where ∆Nd = Nd −N0
d (2.30)

The negative sign was only introduced for convenience, since inserting (2.30) into (2.29)
yields:

∆E(Nd) = 1
2η∆N

2
d and from (2.25) we have: Udd = η (2.31)
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Figure 2.4: The energy difference ∆E(Nd): From Eq. (2.32) (solid line) and
∆E = 1

2η∆N
2
d , where η = 17.6 eV (dashed line).

2.4.1 Results for some Solids

In our calculations, we have only used a one-atom unit cell. If a larger unit cell is chosen,
one could do a variety of additional constraints (e.g. changing the d-occupation separately
on two different atoms). Such calculations could attempt to sort out more details of effective
Hamiltonians. However, such calculations would take our work in a different direction from
what we are interested in. Also, given the intuitive nature of the constrained method and the
difficulties in fitting such a large parameter space, it is not clear how useful the resulting
parameters would be or their uniqueness.

Further, the LMTO method was used up to f -orbitals (see chapter 3). However, using only d-
orbitals yields almost the same results (within 1%) since the additional freedom for electrons
to occupy f -states is hardly used because only a few f -like states, for the materials under
consideration, are below the Fermi level. Nevertheless, there lies no harm in including them.

The method is illustrated for copper in Fig. 2.3. For the ground state, we obtain N 0
d = 9.50

(per atom) and as expected (2.30), i.e. the linear dependence is only valid in a narrow range
around N 0

d . Therefore, we perform calculations at vd = 0 eV and vd ± 0.05 eV and fit the
linear coefficient −η in (2.30) using linear regression7 . We find η = 17.6 eV, as indicated
by the dashed line. Results for several other metals are shown in Table 2.2.

We may also take a look at the total LDA energy

E(Nd) = min

[
E[n] + vd

(∫
d3rnd(r) −Nd

)]
, (2.32)

7Looking only at such a narrow range, where the dependence is almost linear, it is not surprising that we
find linear correlation coefficients r < −0.999.
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Material Structure S [a0] Udd [eV] N0
d

Iron BCC 2.662 11.7 6.53

Cobalt FCC 2.621 12.2 7.53

Nickel FCC 2.602 12.5 8.55

Copper FCC 2.669 17.6 9.50

Silver FCC 3.005 18.8 9.57

Table 2.2: Hubbard-U estimates from constrained LDA. The Wigner-Seitz ra-
dius S is the experimental value [31] for which the calculation was performed.

instead of just looking at the energy difference. Fig. 2.4 shows this energy dependence as
well as the quadratic dependence (2.31) using η = 17.6 eV (dashed line). It should be
stressed that the energies in Fig. 2.4 are relative energies, and E0 ≈ −1.4 keV. Hence, high
precision of the total energy is needed which is avoided when making use of the Hellmann-
Feynman theorem. Therefore, we have not used (2.32), i.e. fit the curve to a parabola, to
compile the Table 2.2 [but used (2.30)].

2.4.2 Different Approach for Atomic Lithium

From a quite simple straightforward calculation, we find one-particle energies and Coulomb
interaction energies for atomic Li. Our interaction energies differ from those one finds from
the constrained LDA method. Because this method becomes more complicated for solids,
we restrict ourselves to the very simple case of atomic Li with only three electrons. The idea
is the following. The three electrons can occupy the four lowest one-particle states, i.e. 1s↑,
1s↓, 2s↑ and 2s↓. For simplicity, we always consider as many electrons in the spin-up as in
the spin-down states. We will call the total number of electrons in the 1s states n0 and call
this state 0; and call the total number of electrons in the 2s states n1 and call this state 1.
Then the total (electronic) energy of the atom can be expressed as:

Etot = n0ε0 + n1ε1 +
n2

0

4
U00 +

n2
1

4
U11 + n0n1U01 (2.33)

Here, εi is the one-particle energy of state i and Uij is the Coulomb energy added to the
system for ni electrons in states i and nj electrons in states j. The factor 1/4 in front of
Uii arises because the state ↑ and ↓-state are filled with ni/2 electrons. The main idea is
to fix n0 and set n1 = 3 − n0, and calculate the total energy with LDA for various n0.
In this way, we obtain a set of equations that allows us to determine the Uij’s. We may
use Janak’s formula ∂E/∂ni = εLDA

i [38], which is valid in density functional theory, to
express our one-particle energies in terms of LDA one-particle energies (which are known).
This reduces the number of unknown quantities from five to three. From Janak’s formula
and (2.33), we have:

εLDA
i = εi +

ni
2
Uii + n1−iU01 (2.34)
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Inserting (2.34) into (2.33) yields:

Etot − n0ε
LDA
0 − n1ε

LDA
1 = −n

2
0

4
U00 −

n2
1

4
U11 − n0n1U01 (2.35)

The LHS of this equation is completely determined from the output of an LDA calculation.
Hence, if we perform three LDA calculations with different n0 (and n1 = 3 − n0), the
equations (2.35) form a linear set of equations for U00, U11 and U01. We find

U00 = 68.6 eV , U11 = 17.5 eV , U01 = 10.8 eV , (2.36)

and for the one-particle energies we have

ε0 = −130.9 eV , ε1 = −33.8 eV . (2.37)

These energies may be compared with corresponding values of Coulomb matrix elements
obtained from hydrogen-atom-like wave functions for Z = 3, see (C.13) in the appendix
C.2). We should mention that one may replace the n2/4 terms in Eq. (2.33) by n(n− 1)/2
(which may seem reasonable too). Also, one can use fixed values for ε0 and ε1 in (2.33)
which can be obtained from the hydrogen-atom-like energy eigenfunction (for Z = 3), i.e.
(C.14). For all these different treatments, the estimates of the U ’s are of the same order of
magnitude.

On the other hand, we can do a constrained LDA calculation. Here, U is defined as the
Coulomb energy cost to place two, for instance two 2s-electrons, at the same site. This is

UCLDA = E(n1 + 1) +E(n1 − 1) − 2E(n1) . (2.38)

E(n1) is the ground-state energy with n1 2s-electrons. If we consider this energy as a
continuous function of n1, where we constrain the value of n1 to be away from its minimized
value, then U11 is given by

UCLDA =
δ2E(n1)

δn2
1

=
1

2
U00 +

1

2
U11 − 2U01 = 21.45 eV . (2.39)

Where we used n0 = 3 − n1 and (2.33). Obviously, UCLDA 6= U11 and moreover from
constrained LDA, we would find exactly the same estimate for U00. This example casts
serious doubts upon the constrained LDA method. Nevertheless, the constrained LDA is
intuitive and contains some type of screening within a one-electron LDA approach since
for each LDA calculation (with fixed vd), the electrons are free to rearrange themselves.
It is not clear which actual approximations this involves, however. Furthermore, there are
several d-bands in transition metals and many interaction matrix elements (on-site, density-
density, intra-band, inter-band, exchange, inter-site, etc.) that have different magnitudes, and
the constrained LDA can only give some average value for these various Coulomb matrix
elements and not the individual ab-initio Coulomb matrix elements. For these reasons, we
will not pursue the constrained LDA any further.
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2.5 Spin-polarized Scheme

The DFT can be extended to a spin density formalism. We shall take a look at the spin-
polarized LDA which is known as the local spin density approximation (LSDA). Now, the
spin-up density n↑(r) and the spin-down density n↓(r) become the independent variables.
In terms of these basic variables, the electron density n(r) and the magnetization density
m(r) are:

n(r) = n↑(r) + n↓(r) and m(r) = n↑(r) − n↓(r) (2.40)

Hence, allowing spin polarization, we minimize (2.13) which we rewrite as:

E[n↑, n↓] = 〈Ψ↑
S|T |Ψ

↑
S〉 + 〈Ψ↓

S|T |Ψ
↓
S〉+ (2.41)

+

∫
d3r

[
1

2

∫
d3r′

e2n(r′)

|r − r′| + vext(r) + εxc(n
↑(r), n↓(r))

]
n(r)

In analogy to the Kohn-Sham equations (2.14), we now find that for each spin direction the
electrons move in an effective one-particle potential

vσS(r) =

∫
d3r′

e2n(r′)

|r − r′| + vσext(r) + vσxc(n
↑(r), n↓(r)) , (2.42)

where estimates for

vσxc(n
↑(r), n↓(r)) =

δExc[n
↑, n↓]

δnσ(r)
(2.43)

and εxc(n
↑(r), n↓(r)) are again given by Barth and Hedin [36], see Eqs. (C.17) and (C.18).

For each spin direction, we have to solve an effective Schrödinger equation:
(
−∇2 + vσS(r)

)
ψσi (r) = εσi ψ

σ
i (r) (2.44)

Note carefully that vσxc, i.e. v↑xc and v↓xc, are different functions (unless the spin-up and
spin-down densities are equal). We only consider the absence of an external magnetic field,
where vσext is spin-independent, thus vσxc is the only spin-dependent term in (2.42). Hence,
in the pure Hartree case (where vσxc = 0), we have v↑S(r) = v↓S(r), and the spin-up and
spin-down electrons move in the same effective potential.

For the spin-polarized case, the self-consistency cycle in section 2.2 basically remains the
same. Apart, from obviously having to use two spin densities n↑ and n↓, changes include:

i.) Use of (2.42) in step 2.

ii.) Performing two energy band calculations in step 3.

iii.) Recalculation of the spin-up and spin-down densities in step 4.8

iv.) At some point, we have to break the spin symmetry since obviously for n↑ = n↓ from
(2.43), we have v↑xc(r) = v↓xc(r).

8This involves the determination of the Fermi level using (3.40).
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The spin magnetic moment per atom may be defined as the total magnetization M (i.e. the
integral of magnetization density m(r) over the unit cell) times the Bohr magneton µB . It
turns out thatM is the difference in the spin-up and spin-down number of states at the Fermi
level9

M ≡
∫
d3r m(r) = n↑(EF ) − n↓(EF ) . (2.45)

We can use either of these expressions (in Eq. (2.45)) to evaluate the magnetic moment but
prefer to use the latter. Since vσxc (as noted above) is the only spin-dependent term in (2.42),
the magnetic moment is completely determined by the exchange-correlation functional. No
additional adjustable parameters have to be introduced to fit the magnetic moment to exper-
iment.

9This follows from (3.38) and (3.31), see section 3.4.2.



Chapter 3

Electronic Structure Calculation

At several points in the preceeding chapter, it was mentioned that an effective Schrödinger
equation has to be solved. Since we are mainly concerned with metals, which have a pe-
riodic crystal structure, this means that the so-called band problem has to be solved. This
is not an easy task. Many different methods have evolved over time. One of these methods
is the LMTO1 method [31, 32, 39] which we use within the atomic sphere approximation
(ASA). We are aware of the fact that this method is not as precise as state-of-the-art meth-
ods, but believe that it serves our purposes very well. State-of-the-art methods include the
FP-LMTO2 [40] and FP-LAPW3 [41] method. These methods have proven to be very suc-
cessful for calculating solids at extreme conditions, e.g. high compression, and materials
with highly complex (open) structures. In comparison to the LMTO-ASA method, the full
potential approach has a few (serious) drawbacks:

• State-of-the-art full potential methods, e.g. the “WIEN code” [42], come in big soft-
ware packages and are more difficult to handle than the rather small LMTO-ASA
code.

• Loss of conceptual simplicity: The wave functions take a quite simple expansion
in the LMTO-ASA method. The `-decomposition is only done inside the muffin-tin
(MT) in FP methods.

• Computationally expensive and thus considerable more time consuming.

For these reasons, we have decided to use the LMTO-ASA method. After a review of the
band problem itself, we will introduce the atomic sphere approximation. Hereafter, we de-
scribe the LMTO method as far as needed for our purposes, mainly the evaluation of Bloch
eigenenergies and Bloch eigenfunctions. We then turn to Brillouin zone integration, using
the tetrahedron method [43] which is useful for evaluating various physical quantities. In
the last section we apply the calculations to copper for several reasons: (i) Copper will be a
test case throughout this work. (ii) To illustrate the calculations. (iii) For later reference.

1Linearized muffin-tin orbitals
2Full potential linearized muffin-tin orbitals
3Full potential linearized augmented plane waves

25
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We should note that we use the “frozen core approximation” where the total charge density
is decomposed into the spin independent core charge density nc(r) and the spin dependent
valence charge densities n↑

v(r) and n↓v(r). The core charge density nc(r) is assumed con-
stant, i.e. it is obtained from an atomic calculation and remains “frozen” during iteration
towards self-consistency.

3.1 Band Problem

Merely for later reference, we review the band problem. For more details see for instance
Refs. [30, 31, 44, 45, 46].

Since the external potential is given by the nuclei, which are arranged in a periodic struc-
ture, our effective potential vS , which enters the Schrödinger equation, is periodic too. This
symmetry can be expressed using the translation operator TR, i.e.:

TRvS(r) ≡ vS(r + R) = vS(r) R = n1a1 + n2a2 + n3a3 (3.1)

Where ni are integers and the set of translation vectors ai are given for the FCC structure
by (A.2) and for BCC by (A.5). Hence, TR commutes with the Hamiltonian:

[H,TR] = 0 H = −∇2 + vS(r) (3.2)

Thus, there exists a basis of the one-particle Hilbert space of states that are eigenstates of
H and simultaneously eigenstates of TR:

H|ψnk〉 = En(k)|ψnk〉 TR|ψnk〉 = eikR|ψnk〉 (3.3)

These states |ψnk〉 are called Bloch eigenstates. The statement of Bloch’s theorem is that
they can be written as:

〈r|ψnk〉 ≡ ψnk(r) = eikrunk(r) where unk(r) = unk(r + R) (3.4)

That is, the function unk(r) is periodic again. Notice that ψnk(r) is only an eigenfunction
for any real k, since from (3.4) ψnk(r) would become infinitely large as r → ∞ for complex
k. The vector k is not uniquely determined by (3.3) since we can always add a vector G

which obeys:

eiGR = 1 ∀ R (3.5)

Equation (3.5) defines the reciprocal lattice whose vectors G can easily be calculated from
the set of translation vectors ai. It follows that the band structure En(k) is periodic in
k-space, i.e. En(k) = En(k + G). Further, we always chose the band index such that
En(k) ≤ En+1(k) and we start counting the bands at n = 0. The band problem is defined
by solving (3.3), more specific: For a given periodic potential, one has to find the Bloch
eigenenergies and eigenfunctions. The LMTO method does just that.
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Figure 3.1: Overlapping spheres in the ASA

3.2 Atomic Sphere Approximation

In the atomic sphere approximation (ASA), the Wigner-Seitz cell is approximated by a
sphere with equal volume Ω. The radius of the sphere is called Wigner-Seitz radius S. From
this definition, we (trivially) find:

4π

3
S3 = Ω = a1 · (a2 × a3) (3.6)

This implies that the muffin-tin spheres are overlapping with an overlap volume equal to the
volume of the interstitial region, see Fig. 3.1. Relations between the Wigner-Seitz radius S,
the lattice constant a and the cell volume Ω are given for FCC and BCC in the appendix
(A.3,A.6). The wave functions are expanded in terms of spherical harmonics within each
sphere, which involves a cut-off, usually ` = 2 (d) or ` = 3 (f ). In particular, potentials
themselves (and hence densities) are approximated spherical symmetric, i.e. cut-off ` = 0.

It is known that the ASA is more accurate for close-packed (FCC, HCP) or nearly close-
packed (BCC) structures than for open crystal structures. In an open structure, e.g. the
diamond crystal structure, the overlap and interstitial regions are larger and since the ASA
neglects this region, it becomes less reliable. There are however ways to avoid this limita-
tion of the ASA. One possibility is to insert so-called empty spheres, i.e. atoms with zero
nuclear charge that fill out the interstitial regions. One can also employ “correction terms”
that improve the ASA for open structures somewhat. However, this is not a major concern
when dealing with the FCC or BCC structure.

3.3 The LMTO Method

We shall now discuss the LMTO method within the ASA4 and for one atom per unit cell.
The LMTO method can be viewed as linearized form of the KKR-ASA (Korringa, Kohn,

4In this work, the term MTO (muffin-tin orbital) should be understood in the sense of ASA muffin-tin
orbitals, hence LMTO should be understood as LMTO-ASA.
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Rostoker) method. In the KKR-ASA method, the basis set is energy dependent, whereas in
the LMTO method the basis set is independent of the energy. For practical band structure
calculations, the KKR-ASA method is much more time consuming, but it gives a vivid
picture of the formation of energy bands. Thus, it is instructive to review the KKR-ASA
method. Moreover, in the KKR-ASA equations, the “potential function” and the “structure
constants” are introduced, from which “canonical bands” can be obtained easily. These are
important concepts which hold the key for successfully linearizing the KKR-ASA equation,
as Ole K. Andersen did [32]. Hence, we briefly describe the KKR-ASA equations, which
serve as an introduction to its linear correspondence, the LMTO equations.

A complete reference for the LMTO method is the book [31]. Additional numerical details
as well as a concise review are given in Ref. [47].

Let us re-state the (single-particle) band problem. We wish to find solutions of

Hψnk(r) =
[
−∇2 + v(r)

]
ψnk(r) = En(k)ψnk(r) (3.7)

where the Bloch eigenfunctions ψnk(r) obey

ψnk(r + R) = eikRψnk(r) . (3.8)

The band structure En(k) is formally defined by these equations, however, this definition is
physically not very illuminating.

3.3.1 KKR-ASA Equations

The starting point is the energy-dependent orbital5

χL(E, r) = i`YL(r̂) ·
{
ψ`(E, r) + p`(E)( rS )` r < S

(Sr )`+1 r > S
, (3.9)

where ψ`(E, r) is a solution of the radial Schrödinger equation

[
− d2

dr2
+
`(`+ 1)

r2
+ v(r) −E

]
r ψ`(E, r) = 0 (3.10)

inside the atomic sphere of radius S. The muffin-tin orbital χL(E, r) is continuous and has
continuous derivatives everywhere. The so-called “potential function” p`(E) is obtained
from the boundary conditions, i.e. continuity and differentiability at r = S:

p`(E) ≡ D`(E) + `+ 1

D`(E) − `
(3.11)

where D`(E) is the “logarithmic derivative” defined as:

D`(E) ≡ S · ∂ lnψ`(E, r)

∂r

∣∣∣
r=S

=
S

ψ`(E,S)

∂ψ`(E, r)

∂r

∣∣∣
r=S

(3.12)

5Here, as commonly used: L = {`,m} (see appendix A)
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The tail of the orbital (S/r)`+1 is a solution of (3.10) for T = E − v(r) = 0, i.e. zero
kinetic energy. Hence, the tail is a solution of the Laplace equation ∇2χ(r) = 0. As a
consequence, the tail of an orbital centered at R 6= 0 can be expanded at R = 0 in terms
of i`YL(r̂)(r/S)`. Thus, the so-called “Bloch sum”, i.e.

∑
R e

ikR, of all tails from orbitals
centered at R 6= 0 can be expanded at R = 0 giving:

∑

R6=0

eikR

(
S

|r −R|

)`+1

i`YL(r−R) =
∑

L′

−1

2(2`′ + 1)

( r
S

)`′
i`

′

YL′(r)Sk
L′,L (3.13)

This equation defines the “structure constants” Sk
L′,L which play an important role as we

shall shortly see.

We are now in a position to realize that a linear combination of Bloch sums of muffin-tin
orbitals χL(E, r)

∑

L

ankL
∑

R

eikRχL(E, r −R) (3.14)

can be a solution of (3.7), i.e. the desired solution of the band problem.6 First of all, (3.14)
is constructed in a way that it will always obey Bloch’s theorem (3.8). Secondly, inside
any atomic sphere, the first term in (3.9), namely i`YL(r̂)ψ`(E, r), is already a solution of
(3.10). Hence,7

ψnk(r) =
∑

L

ankL
∑

R

eikRi`YL(r̂)ψ`(E, r) (3.15)

is a solution of the band problem, provided that the tails from all other spheres cancel the
second term in (3.9), namely i`YL(r̂)p`(E)(r/S)`. This condition is called “tail cancella-
tion”. Using (3.13), we realize that this cancellation occurs when

∑

L

{
P`(E)δL′L − Sk

L′L

}
ankL = 0 where P`(E) = 2(2`+ 1)p`(E) . (3.16)

These are the well-known KKR-ASA equations. This linear set of homogeneous equations
has a non-trivial solution for those energies E = En(k) for which the determinant vanishes:

det
[
P`(E)δL′L − Sk

L′L

]
= 0 (3.17)

While the potential function P`(E) only depends on the potential v(r) inside the atomic
sphere, the structure constants Sk

L′,L only depend on the crystal structure. Hence, the KKR-
ASA equations establish the connection between the potential and the structural part of the
band problem. In this sense, they provide the connection between the energy E and wave
vector k, i.e. the energy band structure.

While equation (3.16) gives a picture of the formation of energy bands, which will become
more vivid in the following section, (3.16) is difficult to handle for numerical calculations.
The reason for this is that the energy E must be found individually by tracing the roots

6Provided that we are able to determine the correct expansion coefficients ank

L .
7Note that ψnk(r) is another function than ψ`(E, r).
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Figure 3.2: The (unhybridized) canonical d-bands for the FCC structure.

of (3.17). Note that (3.16) is not an eigenvalue problem for E, not even for the potential
function, since P`(E) depends on the angular quantum number `. The reason for that again
is that our starting point was an energy-dependent basis set (3.9). In the LMTO method, an
energy-independent basis set will be established. Hence, (3.16) will become an eigenvalue
problem for E which is favorable from the computational standpoint.

3.3.2 Canonical Band Theory

Canonical band theory exploits the fact that the KKR-ASA equations may be solved without
specifying the potential functions P`, considering them (rather than the energy E) as the
independent variables. We will briefly consider non-hybridized canonical band theory where
structure constants with ` 6= `′ are neglected.

Equation (3.13) defines the structure constants Sk
L′,L which depend solely on the crystal

structure, not even on the lattice constant. In Ref. [47], we describe in detail how they can
be obtained numerically.

Using the ASA, the potential v(r) is spherical inside the muffin-tin. As a consequence, the
potential function P`(E) does not depend on the magnetic quantum number m, and the
KKR-ASA equations may be brought into a form in which the sub-blocks Sk

`m′,`m become
diagonal for a given `. This is achieved by unitary transformations of the sub-blocks which
leave the KKR-ASA equations invariant.

Thus, in the non-hybridized theory the structure matrix becomes completely diagonal and
the determinant (3.17) becomes the product of the diagonal elements (P`(E)−Sk

`i), accord-
ingly the KKR-ASA equations have solutions whenever

P`(E) = Sk
`i . (3.18)
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Figure 3.3: Canonical d-DOS for the FCC crystal structure.

The 2`+ 1 diagonal elements Sk
`i of the `th sub-block are called the “canonical `-bands”.

Having solved the non-hybridized canonical band problem, we show (as an example) the
canonical d-bands for the FCC crystal structure (Fig. 3.2) and the canonical d-density of
states as a function of Pd (Fig. 3.3). The density of states was evaluated from the canonical
bands using the tetrahedron method which will be described in section 3.4.2. At this point,
we already realize that the density of states has an amazingly rich structure, considering that
the only quantity entering the evaluation of the graph in Fig. 3.3 is the crystal structure.8

Canonical bands have a number of important characteristics which are independent of the
crystal structure:

i.) The sum of the `-bands (for ` > 0) vanishes at each k-point, i.e.
∑

i Sk
`i = 0.

ii.) Accordingly, the average over the Brillouin zone vanishes as well, i.e.

∑

i

∫

BZ

d3k Sk
`i = 0 ∀ ` . (3.19)

iii.) The Wigner-Seitz rule predicts that an `-band is formed in the range:

−2
2`+ 1

`
(`+ 1) < P` < 2 (2`+ 1) (3.20)

Fig. 3.3, suggests that the band is centered at P = 0. The center of a band is conveniently
chosen to be the energy, here the P -value PC, for which the first order moment9 about PC

8And, of course, the `-character.
9See appendix Eq. (B.8).
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vanishes. From (3.37) and (3.19) it follows that
∫
dP N(P ) P =

∑

i

∫

BZ

d3k

∫
dP δ(P − Sk

`i) P =
∑

i

∫

BZ

d3k Sk
`i = 0 . (3.21)

That is, the first order moment about the origin vanishes. Hence, PC = 0, i.e. all canonical
`-bands10 , are centered at the origin of the P -axis. Moreover, the Wigner-Seitz rule predicts
a range from -15 to 10 for the FCC d-band which is a good estimate, as can be seen from
Fig. 3.3.

3.3.3 The Linear Method

If we could replace the energy-dependent terms in (3.9) by energy-independent functions,
we would arrive at a generalized eigenvalue problem, instead of (3.16), which is desirable
from the computational point of view. As radial basis functions, for each `, we use11

φν`(r) ≡ φ`(Eν`, r) where φ`(E, r) =
ψ`(E, r)√
〈ψ2

` (E, r)〉
, (3.22)

and its energy derivate

φ̇ν`(r) ≡
∂φ`(E, r)

∂E

∣∣∣
Eν`

. (3.23)

Since 〈φ2
` (E, r)〉 ≡

∫ S
0 dr r2φ2

` (E, r) ≡ 1, it follows that φν`(r) and φ̇ν`(r) are orthogonal,
and it may be shown that they are both orthogonal to the core states. The radial logarithmic
derivates (3.12)

Dν` ≡
Sφ′ν`(S)

φν`(S)
and Dν̇` ≡

Sφ̇′ν`(S)

φ̇ν`(S)
where ′ ≡ ∂

∂r
(3.24)

are always different, as shown in [32]. Hence, a function with arbitrary logarithmic derivate
is a linear combination of (3.22) and (3.23). We choose this linear combination to be:

Φ`(D, r) = φν`(r) + ω`(D)φ̇ν`(r) (3.25)

The function ω`(D) is constructed such that Φ`(D, r) has a logarithmic derivate which
equals D. It can be shown that (3.25) may be used to replace the energy dependent terms
in (3.9). The boundary condition at r = S determines D = −` − 1 which, as we shall
see later when we consider the example copper, turns out to be the center of the `-band. To
summarize, we write the energy-independent orbital as:

χL(E, r) = i`YL(r̂) ·
{

Φ`(−`− 1, r) r < S

(Sr )`+1 r > S
(3.26)

10Not just the one shown in Fig. 3.3.
11Again, ψ`(E, r) is a solution of (3.10) for r < S. And Eν` is a fixed energy for every `.
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In analogy to the derivation of the KKR-ASA equations, i.e. expanding the tails around the
origin as a Bloch sum, we can now obtain the LMTO-ASA equations from (3.26), these are:

∑

L

{
Hk
L′L −En(k)Ok

L′L

}
ankL = 0 (3.27)

We have thoroughly discussed these equations in [47]. In particular, all numerical details
are given there. However, one should make some remarks about the LMTO equations:

i.) The Hamilton matrix Hk
L′L and the overlap matrix Ok

L′L, which are explicitly given
in [47], are obtained from the structure matrix Sk

L′L and the so-called four “potential
parameters” (and Eν`) for each `. These are found when solving (3.10) for a given
Eν`, and arise from a parameterization of the potential function around Eν`.

ii.) Eqs. (3.27) have the form on a generalized eigenvalue problem, which can be reduced
to an ordinary eigenvalue problem.

iii.) The Bloch wave functions are given in terms of the radial basis functions (3.22) and
(3.23) inside the atomic sphere as

ψnk(r) =
∑

L

{
φν`(r)A

nk
L + φ̇ν`(r)B

nk
L

}
YL(r̂) , r < S (3.28)

which we normalize to unity. Note that φνl(r) and φ̇νl(r) are real functions. Nu-
merically, our radial functions (φνl(r), v(r), n(r) etc.) are represented on a mesh
rn = r0e

nδx . This has two advantages: (i) Near the nucleus, the mesh is fine and ca-
pable of coping with rapid oscillations. (ii) Since r = ex, we can write dr = rdx. We
chose δx ≈ 0.04, and approximately 220 mesh points inside the atomic sphere.

iv.) The choice of the Eν`’s is crucial for the LMTO method to work. This “linearization
energy” has to be chosen inside the respective band.12 Hence, it is helpful to first
solve the corresponding atomic problem, i.e. solve (3.10), and use the atomic energy
eigenvalue (for the desired n and `) as an initial guess for Eν`. The resulting bands
can then be inspected and one can choose a better set of Eν`’s. It is numerically quite
inexpensive to iterate this procedure a few times.

v.) From (3.28), we can obtain a simple expression for the `-character Cnk
` for each given

band n and k-point:

Cnk` ≡
∑̀

m=−`

∣∣∣〈`m|ψnk〉
∣∣∣
2

=
∑

m

{
|Ank`m|2 + 〈φ̇2

ν`〉|Bnk
`m|2

}
(3.29)

It follows that the `-characters add up to unity, i.e.
∑

`C
nk
` = 1.

12If theEν` is chosen outside the band, so-called “ghost bands” may arise from solving the LMTO equations.
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3.3.4 Moment Expansion of Charge Density

For the LDA self-consistency cycle on page 13, the actual wave functions (3.28) are of minor
interest since only the electronic charge density n(r) is required to evaluate the effective
potential for the next iteration. From (3.28), we may write the spherically averaged (valence)
charge density (per spin) as:

4π n(r) ≡
∫

4π

d2Ω n(r) =
1

N

occ.∑

Lnk

{
φ2
ν`(r)|AnkL |2 + φ̇2

ν`(r)|Bnk
L |2 + (3.30)

+ φν`(r)φ̇ν`(r)
[
Ank∗L Bnk

L +Bnk∗
L AnkL

]}

Here, N is the number of k-points in the Brillouin zone and the sum only includes occupied
states, i.e. En(k) < EF . One should not use (3.30) to evaluate the electronic density since
there is a more elegant and accurate way of doing this calculation which we want to describe
now. Let us re-consider the KKR-ASA equations (3.16) where the wave function φ`(E, r)
is dependent of energy. If, for each `, we knew how many states exist in a small energy
range ∆E, then the electronic density would simply be the sum of all the number of states
in ∆E times φ2

` (E, r) for all energies below EF . Accordingly, in the continuum limit we
find:

4π n(r) =
∑

`

EF∫
dE N`(E)φ2

` (E, r) (3.31)

N`(E) is the `-projected density of states, as defined in (3.44). Since our orbitals are not
energy dependent in the LMTO, we can not use (3.31). However, φ`(E, r) can simply be
expanded around Eν` in terms of φνl(r) and φ̇ν`(r) as a Taylor series in energy:

φ`(E, r) = φν`(r) + εφ̇ν`(r) + 1
2ε

2φ̈ν`(r) + . . . ε ≡ E −Eν` (3.32)

Inserting this Taylor series into (3.31) gives an expression for the electronic charge density
which is useful within the LMTO method:

4π n(r) =
∑

`

{
φ2
ν`(r)M`0 + 2φν`(r)φ̇ν`(r)M`1 +

[
φ̇2
ν`(r) + φν`(r)φ̈ν`(r)

]
M`2 + . . .

}

(3.33)

In the above equation, we introduced the qth moments about Eν` given by:

M`q =

EF∫
dE N`(E) · (E −Eν`)

q (3.34)

Note that the first order moment (3.21) has the same form, except that the upper limit of
the integral in (3.21) is infinity, while now the limit is the Fermi level. Physically, this
difference lies in considering the band, regardless of its occupation, or just the occupied part
of the band. In section 3.4.4, we will show how they can be evaluated using the tetrahedron
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method. From their definition, we immediately realize that M`0 is the number of states with
`-character at the Fermi level, i.e. the number of electrons (per spin) with character `

M`0 = n`(EF ) and
∑

`

M`0 = n(EF ) = Ne , (3.35)

where Ne is the number of (valence) electrons per atom and spin. From 〈φν`|φ̇ν`〉 = 0 and
〈φ̇2
ν`〉 + 〈φν`|φ̈ν`〉 = 0, which can be derived from (3.22), it follows that only the first term

in (3.33) contributes to the net charge in a sphere, i.e.:

∫

MT

d3r n(r) =

S∫

0

dr r2 4πn(r) =

S∫

0

dr r2
∑

`

φ2
ν`(r)M`0 = Ne (3.36)

In the last step we used (3.35). Note that (3.33), on the account of the φν`(r)φ̈ν`(r) term, is
more accurate than (3.30). It may seem surprising that we write the Taylor expansion (3.32)
to higher terms than ε, while, on the other hand, we are using a linear method. The reason
for this is that the LMTO method is a linear method in the logarithmic derivate D and not
ε, which leads to more than linear order accuracy in ε. Hence, we don’t have to truncate the
moment expansion (3.33) after moments of order q = 1. We truncate the expansion after
order q = 2, since the higher terms become more complicated and less significant.

Also note, that by means of (3.34), we can choose Eν` in a way that the first order moments
M`1 vanish. In fact, this corresponds to choosing Eν` in the center of the occupied part of
the `-band which is our choice used in self-consistency calculations.

3.4 Brillouin Zone Integration and Fermi Energy

The density of states (DOS) per spin is defined by

N(E) ≡ Ω

(2π)3

∑

n

∫

BZ

d3k δ(E −En(k)) , (3.37)

where Ω is the volume of the unit cell. Note that the volume of the Brillouin zone (BZ) ΩBZ

is just (2π)3/Ω. The number of states (NOS) n(E) is defined as the integral of the DOS up
to the energy E, i.e.13

n(E) ≡
E∫
dE′N(E′) =

Ω

(2π)3

∑

n

∫

BZ

d3k Θ(E −En(k)) . (3.38)

Here, Θ is the step function (B.9). In addition, we introduce the projected DOS, which is
defined by inserting a projection operator P onto certain states into (3.37), i.e.

NProj(E) ≡ Ω

(2π)3

∑

n

∫

BZ

d3k 〈ψnk|P |ψnk〉δ(E −En(k)) . (3.39)

13Unfortunately, the letter n is reserved for the NOS n(E), the electronic density n(r) and the band index n.
However, in these cases it is either a function of energy, space or no function at all, which tells us its physical
meaning.
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The projected NOS is defined in complete analogy to the projected DOS, i.e. inserting a
projection operator onto certain states into (3.38).

In the case of a metal, where no band gap is present at the Fermi level, the Fermi energy can
be defined by the condition that

n↑(EF ) + n↓(EF ) = Ne . (3.40)

Here, Ne is the total number of valence electrons and nσ(E) is the valence number of states
with spin σ which we evaluate by using the tetrahedron method described below. We evalu-
ate the Fermi energy directly via (3.40) using the bisection method [48]. That is, we find the
root of f(E) = n↑(E)+n↓(E)−Ne. Since we know that the interval [Emin, Emax]

14 con-
tains the root, it is impossible for the bisection method to fail. Moreover, once the energies
Eσn(k) for the k-points which construct the tetrahedra, have been evaluated, the summa-
tion15 is quite inexpensive. Hence, we can bisect until the desired accuracy is achieved.

3.4.1 Symmetry

The Hamiltonian is invariant under all operations of the space group16 . The group of all
translations TR is a sub group of the space group. This symmetry was already explored in
section 3.1, leaving us with Bloch’s theorem and En(k) = En(k + G). The point group
is an additional sub group of the space group. For cubic crystal structures, which are the
only structures considered in this work, namely, FCC and BCC, the point group consists of
48 rotations17 α. We denote αk as the rotation α in the point group applied to the vector k.
Now, the irreducible wedge of the Brillouin zone (IBZ) (with volume ΩIBZ) consists of all
the irreducible k-points (in a wedge) such that αk span the full Brillouin zone. Since the
point group of cubic crystal structures consists of 48 elements, we find:

ΩIBZ =
1

48
ΩBZ (3.41)

The IBZ is considerable smaller than the full Brillouin zone and accordingly it is desirable
to replace the integrals in (3.37) and (3.38) by integrals over the IBZ. This is possible since
for all the 48 rotations α in the point group we have:18

En(αk) = En(k) (3.42)

Now, if we consider a projected DOS (NOS), it is not obvious whether we can reduce the
problem to the IBZ since the projected DOS not only requires the Bloch energies at each
k-point but also the projected Bloch waves. It is shown in appendix C.1 that this is only
possible when the projection operator P commutes with the rotations α in the point group
of the crystal.

14Where Emin (Emax) is the minimal (maximal) energy appearing in the band structure.
15I.e. the corresponding summation (3.43) for the NOS.
16For more details see e.g. Ref. [30].
17Here, rotations are understood to be generalized rotations which include parity operations.
18See Eq. (3.6.6) in Ref. [30].
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3.4.2 The Tetrahedron Method

In the tetrahedron method, one divides the IBZ19 into small tetrahedra i and the integral
(3.37) is then evaluated as a sum:

N(E) =
1

ΩIBZ

∑

n,i

Nn,i(E) (3.43)

Each tetrahedron i has a certain volume Vi and four corner energies for each band. Provided
the corner energies are ordered in a way that E1 ≤ E2 ≤ E3 ≤ E4, we can use the table20

in Ref. [31] (p. 196) to calculate Nn,i(E), its contribution to the DOS.

Using the tetrahedron method, we also calculate the NOS as a Brillouin zone integration, i.e.
as the last term in (3.38), which is more precise than evaluating the NOS using its definition
as an energy integral over the DOS. The corresponding sum looks exactly like (3.43) except
that the contributions are now nn,i(E) which are also tabulated in [31].

The IBZ is spanned by a certain number of k-points. Consequently, the IBZ may always be
expressed in terms of a certain number of tetrahedra. The IBZ is explicitly given in terms
of tetrahedra for the FCC and BCC structures by (A.4) and (A.7). Now, when we divide
the IBZ into small tetrahedra, we start from these (initial) tetrahedra and divide them into
smaller and smaller tetrahedra until we have a number of tetrahedra21 that is large enough to
evaluate (3.43) to the required accuracy. We should mention that we perform this procedure
by always dividing the largest tetrahedron, hence we arrive at tetrahedra that are fairly equal
in size.

3.4.3 Projected `-Density of States

This is the most important example of a projected DOS (3.39). Here, we consider a projec-
tion operator P` onto the `-component, i.e. P` =

∑
m |`m〉〈`m|. It follows from (3.29) that

the expectation value of the projection operator is simply given by Cnk
` . Thus:

N`(E) =
Ω

(2π)3

∑

n

∫

BZ

d3k 〈ψnk|P`|ψnk〉︸ ︷︷ ︸
Cnk

`

δ(E −En(k)) (3.44)

In the appendix C.1, we have shown that P` commutes with the rotations α in the point
group of the crystal. Accordingly, we can reduce the problem to the IBZ and write:

N`(E) =
1

ΩIBZ

∑

n,i

W n,i
` Nn,i(E) , (3.45)

19In the projected case, when [P, α] 6= 0 the full Brillouin zone.
20At this point, a small (but important) printing error in the table should be mentioned. The correct function

N(E1, E2, E3, E4, Vi, E) for E3 ≤ E ≤ E4 is

3Vi

D

(E −E4)
2

(E4 −E3)D4
and not

3Vi

D

(E −E4)
2

(E3 −E4)D4
.

21Usually, on the order of 103.
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where W n,i
` are weight factors found by the average of the four corner weight factors

W nk
` = Cnk` for each tetrahedron i. Again, we calculate n`(E), i.e. the projected `-NOS,

in complete analogy.

3.4.4 Evaluation of Moments

Another important quantity that can be calculated using the tetrahedron method is the set
of moments M`q which are defined in (3.34). As can be seen from (3.35), the 0th order
moments are nothing but the `-projected NOS at the Fermi energy. From (3.37), (3.38) and
the above, it follows that M`q can be evaluated as:

M`q =
1

ΩIBZ

∑

n,i

W n,i
`q nn,i(EF ) where W nk

`q = Cnk` (En(k) −Eν`)
q (3.46)

Again, W n,i
`q is the average of the four W nk

`q ’s at the corners. Evaluating M`q via (3.34)
directly, i.e. as an integral over energy, should be avoided since the DOS N`(E) has a rich
structure, in particular sharp peaks, as can be seen from Fig. 3.3, which will get lost by
applying a finite mesh on the energy axis. Hence, we evaluated M`q using (3.46), which is
not only more precise, but also computationally less time consuming than doing the energy
integral.

3.5 Example Copper

We shall now take a closer look at a Hartree calculation for FCC copper at the experimental
equilibrium Wigner-Seitz radius of S = 2.669a0 [31]. This metal is commonly used as a
test case for various types of calculations and will also be our test case through the following
chapters.

The DOS obtained within an LDA calculation for this metal is shown in Fig. 7.17. Since
we now perform a Hartree calculation, we don’t include the exchange-correlation poten-
tial from all electrons, only for the core electrons. One may argue that this is not really a
Hartree calculation, which is true, but using the frozen core approximation, we will call this
a Hartree calculation anyway, since we are interested in exchange-correlation effects among
the valence electrons. Hence, we treat the exchange-correlation among valence and core
electrons locally, i.e. using LDA, and exploit exchange-correlation effects among valence
electrons using the formalism of second quantization in chapter 6. But now we perform a
Hartree calculation on the “first quantization” level.
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Figure 3.4: Frozen core potential and Hartree potential.

3.5.1 Effective Potential

After clarifying the situation, we can write down the effective potential for which the one-
particle wave functions have to be found. This Hartree potential is in essence given by
(2.15):22

vH(r) =

∫
d3r′

e2ntot(r
′)

|r− r′| − e2Z

r
+ vxc(nc(r)) (3.47)

Here, nc(r) is the core density, ntot the total electronic density and Z the atomic number.
This effective potential is found using a self-consistent band calculation and is plotted in
Fig. 3.4. In addition, one can consider the potential for the case that no Coulomb interaction
is present among the valence electrons present, i.e. not even the classical Hartree interaction.
This potential is given by:

v0(r) =

∫
d3r′

e2nc(r
′)

|r − r′| − e2Z

r
+ vxc(nc(r)) (3.48)

Once the core density nc(r), obtained from a self-consistent atomic calculation, is found, no
self-consistent band calculation is needed to obtain (3.48). This potential is also plotted in
Fig. 3.4 and we refer to it as the frozen core potential or just core potential. The difference
between vH(r) and v0(r) is the Hartree term, caused by the classical Hartree interaction
among the valence electrons.

Note carefully that, in Fig. 3.4, not the spherical averaged potentials themselves but rather
−Zeff(r) ≡ rv(r)/e2 are displayed as a function of the square root of the distance from the

22We refer to the complete effective potential vH(r) as the Hartree potential. Usually, only the first term in
Eq. (2.15) is called the Hartree potential, which we call Hartree term instead.
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nucleus r. Plotting the potentials this way is a lot more illuminating than just plotting v(r).
The major part of the radial dependence of the potentials is caused by the nucleus itself:

v(r) =
−Ze2
r

→ − Zeff(r) ≡ rv(r)

e2
= −Z (3.49)

Hence, plotting the potential caused only by the nucleus would resolve into a straight line
at Zeff(r) = Z , independent of r. Now Zeff(r) is an effective atomic number dependent of
r. A nucleus with atomic number Zeff(r) causes the same force on an electron at distance r
as the potential v(r) would do. Consider:

i.) For the core potential at the Wigner-Seitz radius S, we find Zeff(S) ≈ 11, since the
nucleus (with 29 protons) is screened by 18 core electrons.

ii.) For the Hartree potential, we find Zeff(S) ≈ 0, since the nucleus is shielded by all 29
electrons.

iii.) Very close to the nucleus, we find Zeff(r . 0.002a0) ≈ 29, since the nucleus is
almost unscreened. An electron such close to the nucleus feels its almost unscreened
attraction.

3.5.2 Logarithmic derivative

Having established the Hartree potential, we can now move along and look at quantities di-
rectly derived from vH. First, let us take a look at the logarithmic derivative function (3.12).
Essentially, this function is found by solving the radial Schrödinger equation (3.10) inside
the atomic sphere at fixed energies E. Figure 3.5 shows this function in the broader energy
range we are interested in. It is well known that the logarithmic derivative is a monotonic
decreasing function except at its singularities.

The potential function P` is related to the logarithmic derivative by (3.11) and (3.16), i.e.

P`(E) = 2(2`+ 1)
D`(E) + `+ 1

D`(E) − `
. (3.50)

In terms of the logarithmic derivative, the Wigner-Seitz rule (3.20) states that `-bands are
formed at energies where the logarithmic derivative is negative,23 i.e. from a zero of D`(E)
to the next singularity.

While Fig. 3.5 gives a good overall view of the logarithmic derivative, it is hard to see at
a glance the regions where the functions are negative, i.e. where the `-bands are formed.
Hence, we have plotted these regions in Fig. 3.6, and they can be associated with principal
quantum numbers n.

From (3.21), we know that the center of each `-band is located at the origin P` = 0, hence,
from (3.50), we see that (in terms of the logarithmic derivative) the center of each `-band
corresponds toD`(E) = −`−1. We have evaluated the intersections of D`(E) with −`−1
and plotted these energies in Fig. 3.6 as well (vertical lines).

23Actually, the physical origin of the rule stems from its version D < 0, rather then (3.20).
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Figure 3.5: Logarithmic derivative (3.12) for the Hartree potential (3.47).
Below the energy range of the graph, Ds(E) has two singularities at about
-9 and -1 keV;Dp(E) has one singularity at about -900 eV;Dd(E) andDf (E)
have none.
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Figure 3.6: Energy regions where the logarithmic derivative (Fig. 3.5) is nega-
tive and energies for which D`(E) equals −`−1. The Wigner-Seitz rule states
that the `-bands are formed at those energies, i.e. from a zero of D`(E) to the
next singularity. The 3s and 3p-bands are very narrow, i.e. core-like. The 3d-
band turns out to be the most interesting one (in 3d transition metals) since it
is still quite narrow and close to the Fermi energy.
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Figure 3.7: Energy regions where the logarithmic derivative is negative, but
now for the core potential (3.48).

The 3s and 3p-bands are very narrow and we treat them as frozen core states in self-
consistent band structure calculations. By taking a look at Fig. 3.5 again, we realize that
for the 3s and 3p-bands, the zero and singularity are very close to each other. It should
be mentioned that the lower lying bands are, of course, even much narrower. These are
the 1s, 2s, and 2p-bands24 with one-particle energies about -9 keV, -1 keV and -900 eV
respectively.

Looking at the non-hybridized bands in Fig. 3.6 gives an intuitive picture of the bands in
terms of their origin from the atomic structure of energy levels. This picture is valid for the
core-like levels up to the 3p-band (level). All higher bands are much broader with increasing
width as we move higher in energy.

The 3d band can maximally be filled with ten electrons, thus the eleven valence electrons
fill the lower part of the 4s, 4p and 3d band. Hence, the Fermi energy should be somewhere
between 0 and 10 eV (by looking at Fig. 3.6) and the numerical calculation yields EF =
5.85 eV.25

For higher energies, more and more bands with different `-character overlap,26 making it
possible for the spherical harmonics expansion for plane waves (see (C.26)) to cope with
rapid oscillations.

We will now take a brief look at the situation for the core potential (3.48). It is not surprising
that, when the Hartree interaction among the eleven valence electrons is turned off, the
bands change drastically as shown in Fig. 3.7.

When the Hartree repulsion among the valence electrons is missing, the electrons can move
closer to the nuclei, i.e. they have a higher probability to be in a region of the potential with
lower energy. Thus, the one-particle energies are lowered and moreover the bands become
narrower since the electrons develop a stronger binding to the nuclei.

These two effects, lowering of energies and narrowing of band width, can be seen very
clearly by comparing Fig. 3.6 with Fig. 3.7. In particular, using the core potential, the 3d-
band turns out to be a core-like state, while in the Hartree case, it had a width of 2.8 eV.

24One would usually call these “bands” atomic levels.
25Eqs. (3.47) and (3.48) fix the position of our (arbitrary) energy scale. However, since only a single MT

sphere enters these equations, absolute energy values, e.g. EF , are of little physical relevance.
26Note that we had to truncate the angular character at some point.
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3.5.3 Band Structure

In the preceeding section, we used the Wigner-Seitz rule in order to obtain non-hybridized
bands. Furthermore, we wanted to give the reader who is not so familiar with 3d transition
metals an idea about the positions of the various bands and the order of magnitude of their
absolute positions.

We will now look at the band structure for the Hartree potential, considering only the (hy-
bridized) 4s, 4p and 3d-bands. Note that it is actually sufficient to only include these bands
in a self-consistent band structure calculation since the higher lying bands are un-occupied,
and thus do not contribute to the total charge density.

Fig. 3.8 shows the total and `-projected density of states of the hybridized bands obtained
from the LMTO and tetrahedron method. The d-projected density of states is largest below
the Fermi energy which is located at EF = 5.85 eV. Since this d-like band27 is narrower
than the others and since more electrons can occupy a d-like band, we find the d-DOS largest
compared to the others. Note that in Fig. 3.8 the inverse energy scale on the y-axis differs
by a factor of 20 for the s and p-DOS. Hence, the total density of states is dominated by the
d-DOS.

The `-projected density of states can be compared to the positions of the corresponding
non-hybridized bands according to the Wigner-Seitz rule. To make this comparison easier,
we have plotted a magnification of the corresponding bands from Fig. 3.6 in Fig. 3.9. The
Wigner-Seitz rule predicts the positions of the `-bands very well, i.e. the `-projected DOS
tends to be largest where the Wigner-Seitz rule predicts the `-bands.

We now take a look at the band structure in terms of their k-dependence. Fig. 3.10 shows the
energy eigenvalues plotted along high symmetry lines in the Brillouin zone. The actual k-
points belonging to the letters Γ, X,W etc. are given in the appendix A. The d-bands occupy
the shadowed region from about 0.7 to 4.2 eV whose width is 3.5 eV. States belonging to
these bands are dominated by an angular momentum character of ` = 2, although there is
some hybridization with the broad s-band below and the bands above the d-bands.

Note that the bottom of the s-band is very “free-electron-like”, i.e. E(k) ∝ k2. This can
also be seen from Fig. 3.11: The increase of the s-DOS (at the lower band edge) has the
form of a square root function28

Ns(E) ∝
(
E −E0(k = 0)

)1/2
,

(
when E > E0(k = 0)

)
(3.51)

which is the well-known DOS for free electrons.

Being able to evaluate the eigenenergies En(k), we are in a position to determine the Fermi
surface defined by

En(k) = EF . (3.52)

27Since we are dealing with hybridized bands, we have to call this an “`-like band”, sometimes people
(including myself) call it an “`-band” anyway for simplicity, although, strictly speaking, there are generally no
(pure) `-bands in a hybridized theory.

28The band n = 0 is the lowest in Fig. 3.10, hence E0(k = 0) is the lowest energy at the Γ-point.
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Figure 3.8: Total and projected density of states obtained from the LMTO
method for the Hartree potential (3.47). The `-projected DOS of the hy-
bridized bands may be to compared to the positions of the corresponding non-
hybridized bands according to the Wigner-Seitz rule shown in Fig. 3.9. Note
that the inverse energy scale on the y-axis differs by a factor of 20 for the s and
p-projected DOS.
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Figure 3.9: Magnification from Fig. 3.6, showing the position of the relevant
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Figure 3.10: Converged Hartree band structure for copper. The Fermi energy is
indicated by the line at EF = 5.85 eV. The d-like bands occupy the shadowed
region whose width is about 3.5 eV.
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Figure 3.12: Brillouin zone and Fermi surface of copper from an LDA rather
than a Hartree calculation. However, the difference between LDA and Hartree
is not very significant. Eight necks reach out and connect the Fermi surface in
the Brillouin zone to the next Fermi surfaces translated by G. The resulting
Fermi surface (over all k-space) is sometimes called “jungle gym”.

The Fermi surface is a surface in k-space of constant energy, the Fermi energy. This surface
is shown in Fig. 3.12 for the Brillouin zone. The surface divides the Brillouin zone into two
regions. For copper, these are regions given by the condition whether the 5th band (starting
at 0 from the bottom) is below or above the Fermi level. Inside the surface,29 the 5th band is
below EF ; outside the surface the 5th band is above EF . Since at the L-point the 5th band
is below EF , eight so-called “necks” reach out around the L-point, and its symmetry related
k-points, which connect the Fermi surface in the Brillouin zone to the next Fermi surfaces
translated by G [since En(k) = En(k + G)].

29Hereby, we mean the region where for instance the Γ and L-point are located.
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Figure 3.13: Charge densities (total in terms of both spins) for copper. Both the
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3.5.4 Charge Density

In order to evaluate the Hartree potential (3.47), the knowledge of the total charge density,
for some given effective potential, is required since self-consistency has to be achieved. We
consider the (self-consistent) charge density now. The total charge density is given by the
(frozen) core plus the valence charge density. It is not surprising that, as shown in Fig. 3.13,
the total charge density is dominated by the core charge density close to the nucleus, while
the valence charge density dominates near the boundary of the Wigner-Seitz sphere S.

The valence charge density may be decomposed into its angular momentum components.
By means of (3.33), the spherically averaged `-decomposed valence charge density n`(r)
(per spin) is given by

4π n`(r) = φ2
ν`(r)M`0 +2φν`(r)φ̇ν`(r)M`1 +

[
φ̇2
ν`(r) + φν`(r)φ̈ν`(r)

]
M`2 , (3.53)

such that the total valence charge density is
∑

` n`(r). The valence `-charge densities are
shown in Fig. 3.14. The valence d-charge is dominating the total valence charge density,
since the moment Md0 is much larger than Ms0 and Mp0, and not because φνd(r) is larger
than the s and p-radial functions which are normalized per construction, see Eq. (3.22). Also
note that only the first term in (3.53) contributes to the net charge.
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Figure 3.14: Valence charge densities decomposed into their angular momen-
tum components. The s and p-charge densities are multiplied with a factor of
10 (in order to display all l-charge densities in one figure).

Let us take a look at the moments:

M`q [Rydq] q = 0 q = 1 q = 2

l = 0 3.492973e-01 2.527169e-08 9.068678e-03
l = 1 3.584207e-01 2.847762e-08 8.239024e-03
l = 2 4.792282e+00 -8.686223e-08 2.780522e-02

We have deliberately left the output from our computer code unchanged to demonstrate the
precision of our calculation. These are moments for one spin direction, hence (see (3.35))
the column q = 0 adds to 5.5, since there are 11 valence electrons in copper. Next, we see
that the q = 1 moments are almost zero, which they should, since when we perform self-
consistent calculations, the Eν` are chosen in the center of the occupied part of the `-band.
For these we find:

Eνs = 0.33 eV , Eνp = 2.34 eV , Eνd = 2.79 eV (3.54)

One may take a look at these numbers in connection with Figs. 3.10 and 3.8 to see where
the center of the `-bands are. Note that e.g. the center of the d-band is not the center of the
shadowed region in Fig. 3.10, i.e. 2.45 eV which is too low. From Fig. 3.8, we see that the
center of the d-band is actually higher since the d-DOS is skewed to the left, and the center
is defined via the first moment. Even from the non-hybridized bands in Fig. 3.9, we see that
the center of the d-band is above the middle of the band.



Chapter 4

Wannier Functions

As we will see in chapter 5, the non-interacting part of the Hamiltonian H0 becomes diago-
nal (see (5.9)) when the field operator is expanded in terms of Bloch orbitals. The drawback
of using Bloch orbitals in this expansion is their non-localized nature, which makes the
evaluation of matrix elements a difficult task. The set of Bloch orbitals can be transformed
into a set of localized orthonormal Wannier orbitals spanning the same space. We construct
these localized Wannier functions by using a method proposed by Marzari and Vanderbilt.

4.1 Preliminaries

The Wannier functions [29] are defined in terms of the Bloch functions ψnk(r) as

|Rn〉 =
Ω

(2π)3

∫

BZ

d3k e−ikR|ψnk〉 , (4.1)

so that

|ψnk〉 =
∑

R

eikR|Rn〉 . (4.2)

Here, as usual, Ω is the volume of the real-space primitive cell. It is easily shown that the
Wannier functions form an orthonormal set, i.e. 〈R1n|R2m〉 = δR1,R2δn,m as well as∑

Rn |Rn〉〈Rn| = 1. Since our Bloch functions are represented on a mesh of k-points, we
substitute the integral by a sum over these k-points, i.e. Ω(2π)−3

∫
dk → 1/N

∑
k, and

write (4.1) as:

wRn(r) ≡ 〈r|Rn〉 =
1

N

∑

k

e−ikRψnk(r) (4.3)

Here, N is the number of k-mesh points in the Brillouin zone or, equivalently, the number
of unit cells in the real space supercell that is used to discretize the k-mesh. From (4.3) and
(3.4) it is evident, that:

w0n(r−R) =
1

N

∑

k

ψnk(r−R) =
1

N

∑

k

e−ikRψnk(r) = wRn(r) (4.4)

49
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Hence, it is sufficient to consider the Wannier function w0n ≡ wn and its periodic images
(translated functions).

4.1.1 ASA Wave Functions

From Bloch’s theorem (3.4), we see that Bloch functions obey:

ψnk(r + R) = eikRψnk(r) (4.5)

The knowledge of a Bloch function in a single muffin tin sphere is sufficient for the knowl-
edge of the function in the whole crystal. This situation is different when we consider Wan-
nier functions, which can be centered on different sites. Hence, it is useful to introduce a
notation that holds for both Bloch and Wannier functions. To do this, we perform an expan-
sion like (3.28) in each muffin tin sphere which we label by its site vector R. The complete
wave function (either Bloch or Wannier) is then given by:

Φα(r) =
∑

i

Φα(Ri; r −Ri) (4.6)

Here, we have used the general notation for the wave function expansion Φα(R; r − R)
such that:

i.) Φ is any kind of wave function.

ii.) The α stands for quantum numbers (Bloch: α = {nk}; Wannier: α = {Rn}).

iii.) The first argument in the parenthesis indicates the muffin-tin sphere about which we
are expanding and is labeled by its site vector.

iv.) The second argument in the parenthesis is the position inside this muffin-tin sphere
described by its relative vector. This means that this vector has zero length in the
center of the muffin-tin sphere described by the first argument.

v.) Note that for every R: Φα(R; r) = 0 if |r| > S

In the case where Φ is a Bloch function, we find

ψnk(R; r) = eikRψnk(r) . (4.7)

It is easy to see that (4.7) inserted into (4.6) obeys (4.5). We now derive an expression of
the form of (4.6) for Wannier functions wn. From (4.7) and (4.3) we have

wRn(R
′; r) =

1

N

∑

k

e−ikRψnk(R′; r) =
1

N

∑

k

eik(R′−R)ψnk(r) . (4.8)

Again, we realize that Wannier functions on different sites have the same form (shape) of
their wave functions and differ only by a translation of their origin. For R = 0 equation
(4.8) reduces to:

wn(R; r) =
1

N

∑

k

eikRψnk(r) (4.9)
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Note that, again, |r| < S. We will later find an expansion like (3.28) in each muffin tin
sphere at site R in order to numerically deal with Wannier functions. Also, we will force
the “center” site of the Wannier function wn, i.e. the site where wn(R; r) is largest to be the
site R = 0.

4.1.2 Isolated and Composite Bands

Isolated bands: A Bloch band is said to be “isolated” if it does not become degenerate with
any other band anywhere in the Brillouin zone. In the case of isolated bands, it is natural
to define Wannier functions individually for each band. That is, the Wannier function for
band n (together with its periodic images) spans the same Hilbert space as does the isolated
Bloch band.

Composite bands: Conversely, a group of bands is said to form a “composite group” (or
“composite set”) if the bands are connected among themselves by degeneracies, but are
isolated from all lower or higher bands. In the case of composite bands, however, it is more
natural to consider a set of J “generalized Wannier functions” that (together with their
periodic images) spans the same Hilbert space as the composite set of J Bloch bands. That
is, the “generalized Bloch functions” ψnk which are connected with the nth generalized
Wannier function will not necessarily be eigenstates of the Hamiltonian at this k, but will
be related to them by a J × J unitary transformation. The terms “Bloch function” and
“Wannier function” should be understood in the generalized sense.

4.1.3 Gauge Freedom

As is well known, Wannier functions are not unique. For a single isolated band, the freedom
in choice of the Wannier functions corresponds to the freedom in the choice of the phases
of the Bloch orbitals as a function of wave vector k. Thus, given one set of Bloch orbitals
and associated Wannier functions, another equally good set is obtained from1

|ψnk〉 → eiφn(k)|ψnk〉 , (4.10)

where φn is a real function of k. We call this a gauge transformation of the first kind. In the
case of a composite set of bands, this non-uniqueness corresponds to the freedom to mix
the bands at each k vector:

|ψnk〉 →
∑

m

Uk
mn |ψmk〉 (4.11)

We call this a gauge transformation of the second kind. Here, U k
mn is a unitary matrix.

Equation (4.10) can be regarded as a special case of (4.11) that results when the U ’s are
chosen to be diagonal.

The goal will be to pick out, from all the many arbitrary choices of Wannier functions,
the particular set that is maximally localized according to some criterion. Nevertheless, the
particular set of Wannier functions will, of course, remain arbitrary:

1Note that Bloch orbitals are defined via (3.3), thus the phase is arbitrary.
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i.) There will always be an arbitrary overall phase of each of the J Wannier functions.

ii.) There is a freedom to permute the J Wannier functions among themselves.

iii.) There is a gauge freedom to translate any one of the J Wannier functions by a lattice
vector. That is, to decide which Wannier functions belong to the “home” unit cell
labeled by site 0.

4.2 Marzari-Vanderbilt Method

We use a method, proposed by Marzari and Vanderbilt [33], for determining a “maximally-
localized” set of Wannier functions associated with a set of Bloch bands. The method min-
imizes a functional that represents the total spread

∑
n(〈r2〉n − 〈r〉2n) of the Wannier func-

tions in real space, proceeds directly from the Bloch functions as represented on a mesh of
k-points, and carries out the minimization in a space of unitary matrices U k

mn describing the
rotation among the Bloch bands at each k-point. We will now briefly describe the method
and its connection with the LMTO-ASA method. For further details about the method, we
recommend the excellent paper [33] and also Ref. [47]. Finally, we will be able to write
down Wannier functions in LMTO-ASA fashion, i.e. as a linearized spherical expansion
around each muffin tin sphere.

4.2.1 Spread Functional

A measure of the total delocalization or spread of the Wannier functions is given by the
so-called spread functional

Ω =
∑

n

〈
(
r− 〈r〉n

)2〉n =
∑

n

[
〈r2〉n − 〈r〉2n

]
. (4.12)

For any operator A, 〈A〉n denotes the expectation value 〈0n|A|0n〉. Other localization cri-
teria have also been proposed but this functional leads to a particularly elegant formalism,
allowing, for example, the decomposition into invariant, diagonal, and off-diagonal contri-
butions:

Ω =
∑

n

[
〈r2〉n −

∑

Rm

∣∣∣〈Rm|r|0n〉
∣∣∣
2
]

︸ ︷︷ ︸
ΩI

+
∑

n

∑

Rm6=0n

∣∣∣〈Rm|r|0n〉
∣∣∣
2

︸ ︷︷ ︸
Ω̃

(4.13)

The first term is “gauge-invariant”, i.e. independent of the choice of unitary transformations
among the bands. For later reference, it is useful to decompose the second term into band-
off-diagonal and band-diagonal pieces:

Ω̃ =
∑

m6=n

∑

R

∣∣∣〈Rm|r|0n〉
∣∣∣
2

︸ ︷︷ ︸
ΩOD

+
∑

n

∑

R6=0

∣∣∣〈Rn|r|0n〉
∣∣∣
2

︸ ︷︷ ︸
ΩD

(4.14)
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The expressions for Ω are of little use for us since we wish to find the unitary matrices
Uk
mn on a discretized k-mesh. This mesh is chosen to be simple cubic, and b are vectors

connecting each k-point to its nearest neighbors. We should mention that the construction
of such a mesh is not as trivial as it may seem at first sight, since we have to make sure that∑

k e
ikR = NδR,0. This condition imposes that we have to be careful not to double count

k-points at the boundary of the Brillouin zone. A description of how this is done can be
found in Ref. [47]. We define

Mk,b
mn = 〈umk|un,k+b〉 , (4.15)

where unk is related to ψnk via (3.4), which turn out to be important quantities. Using
(4.15), we find expressions for the expectation values of r and r2 (see Ref. [33]):

〈r〉n = − 1

N

∑

k,b

wbbIm lnMk,b
nn wb =

1

2b2
(4.16)

〈r2〉n =
1

N

∑

k,b

wb

{
[1 − |Mk,b

nn |2] + [Im lnMk,b
nn ]2

}
(4.17)

We should note that these expressions are not unique. This non-uniqueness arises from
the fact that it is only required that these expectation values become exact in the limit of
a dense mesh spacing, i.e. N → ∞ and b → 0. Marzari and Vanderbilt have carefully
chosen these expressions this way, since they insisted on a desirable property: When a gauge
transformation is performed that move the Wannier functions by a lattice site R, one should
find

|unk〉 → e−ikR|unk〉 (4.18)

〈r〉n → 〈r〉n + R

〈r2〉n → 〈r2〉n + 2〈r〉nR +R2 ,

so that Ω remains unchanged. The expressions (4.16,4.17) obey condition (4.18) while still
being exact in the continuum limit. We find expressions for Ω = ΩI + ΩOD + ΩD:

ΩI =
1

N

∑

k,b

wb

(
Tr 1 −

∑

mn

|Mk,b
nn |2

)
(4.19)

ΩOD =
1

N

∑

k,b

wb
∑

m6=n

|Mk,b
mn |2

ΩD =
1

N

∑

k,b

wb
∑

n

(
−Im lnMk,b

nn − b〈r〉n
)2

Note that the trace Tr 1 equals the number of bands J . When the steepest-descent cycle (see
below) is performed, it is a good idea to keep an eye on ΩI and make sure that it does not
change and that ΩOD + ΩD decreases. However, note that ΩD and ΩOD individually do not
need to decrease.
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4.2.2 Gradient of Spread Functional

We consider the first-order change in Ω arising from an infinitesimal gauge transformation
(4.11):

Uk
mn = δmn + dW k

mn (4.20)

In order that Uk is unitary, we have to require that dW is anti-hermitian (dW † = −dW ).
Inserting (4.20) into (4.11) yields:

|unk〉 → |unk〉 +
∑

m

dW k
mn|umk〉 (4.21)

Using the above formalism, Marzari and Vanderbilt have found an expression for the gradi-
ent of the spread functional:

Gk
nm =

dΩ

dW k
mn

=

(
dΩ

dW k

)

nm

Gk =
dΩ

dW k
(4.22)

We will not write down the entire expression but mention that only the matrices M k,b
nm enter

this expression. To see this, we realize that (4.21) establishes a relation between dW and
dM which becomes obvious when writing (4.21) in connection with its version for 〈unk|.
Hence, dW and dΩ (and therefore also Gk) are entirely given by Mk,b

nm .

4.2.3 Algorithm

The method now uses a steepest-descent minimization in order to minimize the spread func-
tional. We make small updates of the matrices U k choosing

dW k = ε Gk . (4.23)

It can easily be shown that dΩ < 0, i.e. it is guaranteed that Ω is reduced. In practice, we take
a fixed finite step ε. The wavefunctions are then updated according to the matrix exp[∆W k],
which is unitary because ∆W is anti-hermitian. It should be noted that the evolution towards
the minimum requires only the relatively inexpensive updating of the unitary matrices, and
not of the wavefunctions. The matrices M k,b

nm only need to be evaluated once during the
initialization of the cycle. The Algorithm is:

Initialization: N = 0

U (0)k
mn = δmn (4.24)

M (0)k,b
mn = 〈umk|un,k+b〉 (4.25)

Cycle: N = 1, 2, 3 . . .

U (N)k = U (N−1)k exp
[
∆W k(M (N−1)k,b)

]
(4.26)

M (N)k,b = U (N)k † M (N−1)k,b U (N)k+b (4.27)

This algorithm can almost be considered as a “black box” since the only input are the ini-
tializing M (0)k,b

mn , and once convergence is achieved, the U k
mn are the only output.

Applying these Uk
mn to the original Bloch orbitals will yield (generalized) Bloch orbitals

which, when used in (4.1), will result in maximally localized Wannier functions.
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4.2.4 Application

Before minimizing Ω according to this procedure, it is useful to prepare the Bloch orbitals
to make the starting Wannier functions somewhat localized. This has two advantages: (i)
the minimization procedure converges faster, and (ii) this helps to avoid getting trapped in
local minima. Marzari and Vanderbilt suggest several possible preparations. We have found
our own method, which seems to work well. This involves a simple gauge transformation
for each Bloch band (4.10) which is given by

ψnk(r) → exp
[
− i Im lnψnk(rn)

]
ψnk(r) . (4.28)

This gauge transformation has the property that Im lnΨnk(rn) transforms to zero. So at
the point rn, all the Bloch functions will have the same phase (in this case just 1 + i0) and
〈rn|0n〉 will take a large value. We thus expect the Wannier function to be fairly localized
at rn. To make the method work well, one should choose rn where the Wannier functions
are expected to be reasonably large. In our calculations, we have chosen this vector to be
well away from the expected zeroes of the spherical harmonics and with an absolute value
far enough away from the origin to be in a place where the Wannier functions should have
a significant magnitude. Also note that we have chosen rn individually for each Bloch band
n, since we expect the optimally localized Wannier functions to be localized in different
regions. We have found that the minimization procedure converges slower when all the rn
are equal.

In the procedure of Marzari and Vanderbilt, the starting point for the calculation is a set of
reference matrices defined by (4.25):

M (0)k,b
mn = 〈umk|un,k+b〉 = 〈ψmk|e−ibr|ψn,k+b〉 (4.29)

We calculate the product of e−ibr with the last wave function |ψn,k+b〉 by using (C.26),
(C.25) and solve the remaining integral by using (5.19) inside one atomic sphere. We use a
uniform (simple cubic) discrete k-mesh with a spacing of ∆k = 0.2 (2π/a), i.e. in the case
of FCC, we have 500 points in Brillouin zone (for BCC 250). In such a mesh, there are 6
nearest neighbors for the b-vectors needed for the numerical derivatives. We note that the
reference matrices obey Mk,b

mn = Mk+b,−b ∗
nm , hence, e.g. for FCC and a set of 9 composite

bands, we need to evaluate 3 · 500 · 92 = 121, 500 complex numbers. For the step size (see
Eq. (57) in Ref. [33]), we use α = 0.4.

The final result can be written in a form similar to the LMTO wave functions (3.28). Fol-
lowing the notation of section 4.1.1, we find

wn(R; r) =
∑

L

{
φν`(r)A

Rn
L + φ̇ν`(r)B

Rn
L

}
YL(r̂) , (4.30)

where the ARn
L and BRn

L originally come from the LMTO wave functions, i.e. AnkL and
Bnk
L , but are then updated from all the relevant phase information (4.28), (4.9) and unitary

matrices (4.11).

Because of the normalization of the starting LMTO Bloch wave functions (which are nor-
malized to unity within a single unit cell), each Wannier function is naturally normalized to
unity when integrated over all space.
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4.3 Properties

Continuing our example from section 3.5, we now explore some properties of maximally
localized Wannier functions of copper constructed from an effective Hartree potential. We
consider two types of treatment:

Composite treatment: As seen from Fig. 3.10, the valence bands are connected among
themselves by degeneracies, hence it is only natural to consider all bands as a composite set
of bands, i.e. perform the Marzari-Vanderbilt method for this set of bands. Since we take
4s, 4p and 3d orbitals into account, we consider a composite group of 9 bands. Physically,
this composite group is not isolated because it is connected to an infinite number of bands
in the continuum. These bands have been neglected, since they do not contribute to the
electronic charge density. But only all these generalized Wannier functions (plus the core
orbitals) span the complete one-particle Hilbert space. Thus, we make an approximation at
this point. This approximation was not important in section 3.5. We will have to consider this
approximation again in chapter (5) when we expand field operators in terms of generalized
Wannier functions.

Isolated treatment: We might as well consider the 9 composite Bloch bands individually,
i.e. perform the Marzari-Vanderbilt method for each Bloch band, as if all bands are isolated.
Here, the order of Bloch bands is (for instance) determined by En(k) ≤ En+1(k) and
no unitary gauge transformations of the second kind (4.11) are involved. One may argue
that this is not the natural treatment, however, this is only a special case of the composite
treatment in which the unitary matrices are chosen to be diagonal. There is nothing wrong
in doing this, we just don’t allow all the gauge freedom available. The Wannier functions we
obtain are as arbitrary as the Wannier functions we obtain using the composite treatment,
but, as we have found out, not quite as localized. We are not able to obtain maximally-
localized Wannier functions (in their original sense) using the isolated treatment.

In this connection it should be noted that, using the composite treatment, we don’t obtain
maximally-localized functions (in their original sense) either, since we restrict ourselves
to 9 bands (out of an infinite number of bands). This is just another consequence of the
approximation we make.

We look at localization properties first, in addition, we wish to present Wannier function pro-
jected density of states, i.e. inserting a projection operator onto Wannier states into (3.37). In
each of the following (sub) sections, we take a look at the theory in general first, followed by
results for the composite and isolated treatment for the bands of copper (constructed from
the effective Hartree potential).

4.3.1 Localization of Wannier Functions

Having obtained all expressions in (4.30), i.e. AnRL , BnR
L and the radial wave functions

which we have already obtained from the LMTO method, we can look at the portions of the



4. Wannier Functions 57

Wannier functions2 in different muffin-tin spheres centered at R. That is,

〈wn|wn〉R ≡
∫

R

d3r|wn(r)|2 =

∫

0

d3r|wn(R; r)|2 , (4.31)

where the integrals are understood to be taken over the MT sphere at the site indicated.
Inserting (4.30) into (4.31) yields

〈wn|wn〉R =
∑

`

∑̀

m=−`

{
|ARn

`m |2 + 〈φ̇2
ν`〉|BRn

`m |2
}

︸ ︷︷ ︸
≡ CRn

`

=
∑

`

CnR` . (4.32)

Introducing CRn
` , i.e. the `-portion of the Wannier function n in the MT at site R. The CRn

`

are the analog of Cnk
` , defined in (3.29).

Composite treatment:

Table 4.1 shows the CRn
` and there are some points worth mentioning:

i.) As mentioned earlier, there exists gauge freedom to permute the Wannier functions
among themselves. Hence, there is no physical meaning associated with the index n
of a Wannier function n, not in terms of energy or any other quantity.

ii.) Wannier functions with high total d-character (third row, last column) are more local-
ized than Wannier functions with smaller d-character. States 0 thru 4, in particular 2
and 3, have the highest d-character and also the highest localization, while 5 thru 8
have more s and p-character and are less localized.

iii.) It is interesting to see that states 5 thru 8, which have small total d-character, have a
large d-character in their next neighbor spheres (third row, second column).

iv.) One should not be fooled into thinking that the Wannier functions themselves decrease
as rapidly as Tab. (4.1) suggests. The CRn

` ’s are averaged densities and contain the
square of the wave functions.

v.) All values are given to 4 decimal places, however, these numbers were numerically
obtained using double precision.3 Hence, the rows and columns may not add up exactly
to the values shown.

Isolated treatment:

Without showing a big table, we state that this treatment leads to much less localized Wan-
nier functions. For example, 〈wn|wn〉0 =

∑
`C

0n
` , i.e. the total portion in the “home”

sphere, is only between 6% up to 19%, whereas in the composite treatment above this was
never less than 88%. This was expected, since nine gauge transformations of the first kind
(4.10) do not allow quite as much freedom as a single unitary gauge transformation. This
treatment will become more interesting in the following (sub) section.

2The Wannier functions themselves are centered at 0, as usual.
3We always use double precision which corresponds to about 16 decimal places.
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n ` C0n
`

∑†
RC

Rn
`

∑‡
RC

Rn
`

∑
RC

Rn
`

0 s 0.0019 0.0019 0.0001 0.0040
p 0.1376 0.0037 0.0002 0.1416
d 0.8330 0.0211 0.0004 0.8544∑

0.9725 0.0267 0.0008 1.0000
1 s 0.0007 0.0015 0.0001 0.0024

p 0.0956 0.0030 0.0002 0.0988
d 0.8819 0.0166 0.0003 0.8988∑

0.9782 0.0212 0.0006 1.0000
2 s 0.0001 0.0008 0.0000 0.0009

p 0.0240 0.0016 0.0001 0.0257
d 0.9655 0.0078 0.0001 0.9735∑

0.9896 0.0102 0.0003 1.0000
3 s 0.0000 0.0008 0.0000 0.0008

p 0.0250 0.0015 0.0001 0.0266
d 0.9647 0.0078 0.0001 0.9726∑

0.9897 0.0101 0.0003 1.0000
4 s 0.0018 0.0016 0.0001 0.0035

p 0.0990 0.0031 0.0002 0.1023
d 0.8767 0.0172 0.0003 0.8942∑

0.9775 0.0219 0.0006 1.0000
5 s 0.2058 0.0073 0.0006 0.2137

p 0.5473 0.0150 0.0010 0.5633
d 0.1326 0.0889 0.0015 0.2230∑

0.8857 0.1113 0.0031 1.0000
6 s 0.2122 0.0075 0.0006 0.2203

p 0.5550 0.0153 0.0010 0.5713
d 0.1164 0.0904 0.0015 0.2084∑

0.8837 0.1132 0.0031 1.0000
7 s 0.2381 0.0076 0.0006 0.2463

p 0.5527 0.0157 0.0010 0.5694
d 0.0899 0.0928 0.0016 0.1843∑

0.8807 0.1161 0.0032 1.0000
8 s 0.2212 0.0075 0.0006 0.2293

p 0.5582 0.0155 0.0010 0.5746
d 0.1027 0.0917 0.0016 0.1960∑

0.8821 0.1147 0.0032 1.0000

Table 4.1: The CRn
` for our set of maximally localized Wannier functions ob-

tained from the Hartree calculation of copper. The sum
∑†

R includes only next

neighbors,
∑‡

R includes second nearest neighbors and up. In the last column,
the sum is not restricted, hence, the last column shows the total `-character
of the Wannier state n. The last row (for each n) shows the sum of the three
values above. Thus, the value in the last row in the C0n

` column is the total
portion of the nth Wannier function in its “home” sphere, i.e. 〈wn|wn〉0.
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4.3.2 Wannier Function Projected DOS

We have already discussed the `-projected DOS in section 3.4.3, i.e. P in (3.39) is the
projection operator onto the `-component. Now, in complete analogy, we consider the pro-
jection operator onto Wannier states:4

NRj(E) =
Ω

(2π)3

∑

n

∫

BZ

d3k 〈ψnk |Rj〉〈Rj|︸ ︷︷ ︸
PRj

ψnk〉δ(E −En(k)) (4.33)

Note that the ψnk in this formula have to be the Bloch states before the gauge transforma-
tion, since the band structure En(k) is related to the untransformed states.

The Wannier states |Rj〉 span the same Hilbert space as the composite set of Bloch bands.
In this (sub) Hilbert space we have completeness, i.e.:

∑

Rj

PRj =
∑

Rj

|Rj〉〈Rj| =
Ω

(2π)3

∑

n

∫

BZ

d3k |ψnk〉〈ψnk| = 1 (4.34)

However, in (4.33) it is sufficient to only consider the Wannier states |0j〉 in our projection
and not all the |Rj〉, since

〈ψnk|P0j|ψnk〉 = 〈ψnk|PRj |ψnk〉 , (4.35)

which is easy to show from (4.1) and Bloch’s theorem. Hence,

Nj(E) ≡ N0j(E) = NRj(E) and N(E) =
∑

j

Nj(E) . (4.36)

A not too surprising result, considering |Rj〉 are just periodic images of |0j〉.
Again, we can use the tetrahedron method to calculate Nj(E). However, this time the prob-
lem can not be reduced to the irreducible wedge of the Brillouin zone since in general Pj
does not commute with the rotations α in the point group of the crystal. Thus:

Nj(E) =
1

ΩBZ

∑

n,i

W n,i
j Nn,i(E) where W nk

j =
∣∣∣〈ψnk|0j〉

∣∣∣
2

(4.37)

As usual, W n,i
j is the average of the W nk

j at the corners and the projected NOS is treated in

complete analogy. It remains to obtain W nk
j . From (4.11) we have

|0j〉 =
1

N

∑

km

Uk
mj |ψmk〉 , (4.38)

such that5

〈ψnk|0j〉 =
1

N

∑

k′m

Uk′

mj〈ψnk|ψmk′〉 =
∑

k′m

Uk′

mjδnmδkk′ = Uk
nj . (4.39)

4Here we use the index j for Wannier functions and n is reserved for the band index of Bloch functions and
Bloch eigenenergies. We consider the Wannier function projected DOS per spin, except when noted otherwise.

5Note that 〈ψnk|ψnk〉 = N , since we normalize Bloch states to unity inside the atomic sphere.



60 4. Wannier Functions

Hence, we have

W nk
j = |Uk

nj |2 , (4.40)

and the Uk
nj are known from the algorithm in section 4.2.3. Note that the W nk

j add up to
unity for each nk (as they should), since the matrices U k are unitary:

∑

j

W nk
j =

∑

j

Uk
njU

k∗
nj = (UkUk†)nn = (1)nn = 1 (4.41)

Also note that, from the completeness of the Bloch functions (4.34), it follows that:

∫
dE Nj(E) =

Ω

(2π)3

∑

n

∫

BZ

d3k 〈0j|ψnk〉〈ψnk|0j〉 = 1 (4.42)

In other terms, the W nk
j add up to unity for each j (expect for the factor N ) too:

1

N

∑

nk

W nk
j =

1

N

∑

nk

〈0j|ψnk〉〈ψnk|0j〉 = 1 (4.43)

Using (4.40), we are in a position to evaluate Nj(E) numerically.

Composite treatment:

As one would expected, the Wannier function projected DOS for j = 0 to 4 (with high
d-character, see Tab. 4.1) look a lot like the the d-projected DOS Nd(E) in Fig. 3.8. The
densities Nj(E) for j = 5 to 8 are more spread out in energy, since they have s and p-
character. Except for these insights, it is not very illuminating to look at all the Nj(E).
Hence, we have not plotted them; we have plotted some Wannier function projected DOS
in Ref. [28].

Isolated treatment:

To discuss Nj(E), this treatment is more illuminating. As usual, we choose the band index
n of the Bloch bands to obey En(k) ≤ En+1(k). For example, Fig. 4.1 shows the 2nd

Bloch band (n = 2) which is restricted to a narrow energy range from about 2.2 to 3.8 eV.
No unitary gauge transformations (4.11) are involved in the evaluation of the 2nd Wannier
function. Hence, the 2nd Wannier function (together with its periodic images) spans the
same space as the Bloch functions of the 2nd band. Accordingly, the projected DOS N2(E)
will only be different from zero in the energy range of the 2nd Bloch band and vanish
everywhere else. This can be seen very clearly from Fig. 4.2 in which the lowest six Nj(E)
are shown.
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Figure 4.1: The 2nd band from Fig. 3.10 is plotted bold. As usual, the 0th band
is the lowest in energy. Note that at some points in k-space this band appears to
be the 1st band, e.g. as we move from the L towards the Γ-point. The reason for
this are degeneracies with other bands at these k-points. In the corresponding
region from L to Γ, we have E1(k) = E2(k). For the Γ-point the degeneracy
is E1(0) = E2(0) = E3(0).
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Figure 4.2: Wannier function projected DOS Nj(E) (lines) using the isolated
treatment of the copper bands and the total DOS (shadowed). The density
N2(E) is non-vanishing from about 2.2 to 3.8 eV. This corresponds to the
region of the 2nd band shown in Fig. 4.1 above. Note: we have plotted the
spin-up plus spin-down DOS.
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Figure 4.3: Wannier function projected DOS N3(E) from Fig. 4.2 (solid) and
the Gaussian (4.47) with E3 = 3.22 eV and σ3 = 0.32 eV, normalized to 2 on
account of spin (dashed).

4.3.3 Moments of projected DOS

The qth moment of the jth Wannier function projected DOS (per spin) about energy Ej is
given by:

Mjq =

∫
dE Nj(E) · (E −Ej)

q (4.44)

As earlier, see text around Eq. (3.21), we may choose the center of Nj(E) by the condition
that the first order moment vanishes, i.e. Mj1 ≡ 0. Using (4.42) and (4.44), we see that:

Ej =

∫
dE Nj(E) ·E (4.45)

Accordingly, we may associate an energy with each Wannier function. If we treat a com-
posite set of bands, we may choose the arbitrary index j such that Ej ≤ Ej+1.

Since (4.45), the moments (4.44) are moments about the center, also known as “central
moments” [50]. It is well-known that the second central moment is the variance, thus the
square root of Mj2 is the standard deviation σj of the j-projected DOS, i.e.

σj =
√
Mj2 . (4.46)

We may use σj as a measure of the width of a Wannier function in terms of energy.

Using the tetrahedron method, we have calculated Ej and the central moments up to second
order.6 We can test our numerics, since from (4.42), we have Mj0 = 1 and per definition
Mj1 = 0. Also, just as a check, to see whether the second moments we obtain are reason-
able, we pick out a j-projected DOS that comes close to a Gaussian function. It looks like
N3(E) in Fig. 4.2 is the best we have. We now simply compare N3(E) with the Gaussian

1

σ3

√
2π

exp

(
−E −E3

2σ2
3

)
, (4.47)

6In analogy to section 3.4.4.
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Composite treatment:
j 0 1 2 3 4 5 6 7 8

Ej [eV] 5.86 5.04 3.60 3.61 5.12 15.45 15.66 15.81 15.79

σj [eV] 7.64 6.60 3.87 3.91 6.71 11.05 11.02 10.96 10.99

% DOS 9.3 9.6 8.6 8.6 9.2 14.0 13.5 13.7 13.6

nj(EF ) 1.64 1.71 1.87 1.87 1.70 0.59 0.56 0.53 0.54

Isolated treatment:
j 0 1 2 3 4 5 6 7 8

Ej [eV] 0.51 1.95 2.65 3.22 3.76 6.11 16.32 23.50 27.92

σj [eV] 1.11 0.33 0.32 0.32 0.28 2.09 5.49 5.15 4.84

% DOS 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0

nj(EF ) 2.00 2.00 2.00 2.00 2.00 1.00 0.00 0.00 0.00

Table 4.2: Shown are (i) The central energy Ej . (ii) The width σj . (iii) The
portion of the DOS at the Fermi level, i.e. Nj(EF )/N(EF ) (in percent). (iv)
The projected NOS at the Fermi level nj(EF ), where the values account for
both spins, so that 0 ≤ nj(EF ) ≤ 2.

which has the same moments up to second order, where E3 and σ3 are obtained from the
tetrahedron method. This is done in Fig. 4.3. As can be seen, the curves agree as good as
they possibly can, hence the second moment and the center energy we have obtained from
the tetrahedron method make good sense.

Remarks concerning Tab. 4.2:

Row 1: For the composite treatment Ej � Ej+1 in general, however (as noted above),
we may choose the arbitrary index j such that Ej ≤ Ej+1; while for the isolated
treatment we already have Ej ≤ Ej+1.

Row 2: The widths σj are much smaller in the isolated case since we pick out Bloch states
which are restricted to a narrow energy range.

Row 3: Note that in the composite case for every j, this portion is non-vanishing. In con-
trast, in the isolated case, only the 5th Wannier function projected DOS is non-
vanishing and all others are zero. This is evident from Fig. 4.2.

Row 4: The projected NOS at EF in the composite case is largest for the d-like states
(j = 0...4) since the projected DOS, which looks similar to the d-DOS in Fig. 3.8,
is peaked below the Fermi level. In the isolated case nj(EF ) = 2 for j ≤ 4 and
n5(EF ) = 1 since n(EF ) = 11 for copper. This is also evident from Fig. 4.2.



Chapter 5

Matrix Elements

Many-body theories of correlated electronic materials are traditionally based upon the for-
malism of second quantization. Hubbard-like models1 also assume an underlying basis of
localized (Wannier) orbitals. However, these theories often involve a Hubbard-U term as an
empirical parameter. First, we take a look at the second-quantized Hamiltonian,2 mainly to
introduce the notation that we will use from here onwards.

A big part of this chapter is devoted to methods we have developed to determine single-
particle Hamiltonian and Coulomb interaction matrix elements for localized (generalized)
Wannier functions within the framework of LMTO-ASA. In order to make these methods
work, it is always assumed that the home sphere is chosen to be the center sphere, in other
words, the Wannier function |Rn〉 is largest inside the sphere around site R.

Obviously, since computing time and memory are not infinite, matrix elements can only
be calculated for a limited number of Wannier functions. Hence, we are interested in a
“minimal” basis set of maximally localized Wannier functions for our second quantized
Hamiltonian. We choose this basis set to only include the orbitals under consideration, i.e.
4s, 4p and 3d. However, these orbitals arise in any (solid-state) Hamiltonian, e.g. from
(3.47) or (3.48) in section 3.5. We will illustrate that the choice of the “basis set Hamilto-
nian”, i.e. the effective one-particle Hamiltonian we use to construct the Wannier functions
from, is crucial. On the other hand, one may argue that any basis set is equally good, which is
true, but only as long as it is a complete set; and a minimal basis is by no means complete,3

but it is customized to the problem under consideration. Moreover, from a computational
standpoint, it is desirable to use as few basis orbitals as possible.

In this connection it is important to notice that the “basis set Hamiltonian”, from which
the minimal basis set is obtained, may be a different (effective) Hamiltonian than the one
whose matrix elements we evaluate. Hence, we will talk about different Hamiltonians, and
confusion will arise if one is unaware of this distinction.

1In particular the Hubbard model [6] itself, the Falicov Kimball model or the Anderson model.
2The introduction of second quantization is based upon [44, 51] which we recommend for further details.
3See discussion at the beginning of section 4.3.

64
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5.1 Hamiltonian in Second Quantization

Until now, we have only used the formalism of usual quantum mechanics (“first quantiza-
tion”), i.e. the quantization of classical mechanics. An assumption in establishing the LDA
(and the Hartree approximation) was to consider an auxiliary non-interacting system (2.6).
The ground state ΨS of this single-particle problem is simply a Slater determinant obtained
by populating the lowest one-electron orbitals ψi, defined by an effective Schrödinger equa-
tion. This made things easy, we never actually had to write down the many-particle ground
state in terms of the one-electron orbitals ψi; all we needed was the ground state density
(2.9). However, when dealing with interacting systems, the many-particle ground state can
no longer be written as a single Slater determinant, but as a linear combination of all possi-
ble N -particle Slater determinants that can be constructed from any complete one-particle
basis. The (rather cumbersome) task of constructing Slater determinants can be avoided
using a very elegant formalism called “second quantization”, which already takes the anti-
symmetry of the fermion wave functions into account.

The second-quantized Hamiltonian (2.1) for particles in an external potential vext (indepen-
dent of spin) is given by:

H = H0 +W =
∑

σ

∫
d3r Φ†

σ(r)
(
−∇2 + vext(r)

)
Φσ(r) + (5.1)

+
1

2

∑

σσ′

∫
d3r d3r′ Φ†

σ(r)Φ
†
σ′(r

′)
e2

|r − r′| Φσ′(r
′)Φσ(r)

Here, Φ†
σ(r) and Φσ(r) are field operators that create and annihilate a particle with spin σ

at position r. For electrons, these field operators obey:

{Φσ(r),Φ
†
σ′(r

′)} = δσσ′δ(r − r′) , {Φσ(r),Φσ′(r
′)} = {Φ†

σ(r),Φ
†
σ′(r

′)} = 0

Where {A,B} ≡ AB +BA.

Remark: Note that the expectation value for the energy of a single particle moving
in an external field vext in terms of its wave function ϕσ(r) is:

∑

σ

∫
d3r ϕ∗

σ(r)
(
−∇2 + vext(r)

)
ϕσ(r)

And the expectation value for the energy of a two particle interaction in terms of a
single-particle wave function ϕσ(r) is:

1

2

∑

σσ′

∫
d3r d3r′ ϕ∗

σ(r)ϕ
∗
σ′ (r

′)
e2

|r − r′| ϕσ′(r
′)ϕσ(r)

Hence, if we replace in the expectation values single-particle wave functions by
many-particle field operators, i.e. ϕ∗

σ(r) → Φ†
σ(r) and ϕσ(r) → Φσ(r), we arrive

at the second-quantized Hamiltonian (5.1). This formal similarity is the reason why
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the field operator formalism is called second quantization. Single-particle expectation
values appear to have become operators for physical quantities, while one-particle
wave functions appear to have become field operators. This similarity is only an ap-
pearance, we don’t have a quantized quantum mechanics, only another mathematical
language for the same old quantum mechanics.

The field operators in (5.1) may be expanded in terms of a set of single-particle wave func-
tions ϕi(r) independent of spin:

Φ†
σ(r) =

∑

i

ϕ∗
i (r)c

†
iσ , Φσ(r) =

∑

i

ϕi(r)ciσ (5.2)

While Φ†
σ(r) [Φσ(r)] creates [annihilates] a particle with spin σ at position r, the operator

c†iσ [ciσ] creates [annihilates] an electron in a state of spin σ whose wave function is ϕi(r).
Even though the ϕi(r)’s are independent of spin, the expansion (5.2) is exact since the
ϕi(r)’s span the one-particle Hilbert space, i.e. they form a complete set. Our approximation
of using a “minimal” basis set consists of using only a few orbitals ϕi(r) (still independent
of spin). Inserting the expansion (5.2) into (5.1) yields:

H =
∑

ijσ

∫
d3r ϕ∗

i (r)
(
−∇2 + vext(r)

)
ϕj(r)

︸ ︷︷ ︸
(H0)ij

c†iσcjσ + (5.3)

+
1

2

∑

ijk`

∑

σσ′

∫
d3r d3r′ ϕ∗

i (r)ϕ
∗
j (r

′)
e2

|r − r′| ϕk(r
′)ϕ`(r)

︸ ︷︷ ︸
Wij,k`

c†iσc
†
jσ′ckσ′c`σ

In order to simplify expressions that involve indices i and σ, like the one above, we may
introduce the abbreviated notation 1 to mean i1σ1 and 2 to mean i2σ2, etc. . But i and σ do
not always come in pairs in (5.3). We can nevertheless use this new notation by using the
Kronecker delta, i.e.

H =
∑

12

δσ1σ2(H0)i1i2︸ ︷︷ ︸
(H0)12

c†1c2 +
1

2

∑

1234

δσ1σ4δσ2σ3Wi1i2,i3i4︸ ︷︷ ︸
W12,34

c†1c
†
2c3c4 . (5.4)

For convenience, we may write the matrix elements as:4

(H0)12 = 〈1|H0|2〉 = δσ1σ2(H0)i1i2 and (5.5)

W12,34 = 〈1|〈2|W |3〉|4〉 = δσ1σ4δσ2σ3Wi1i2,i3i4 (5.6)

As can be seen from (2.2), the many-particle operator H0 is a sum of single-particle oper-
ators which act on a single particle. This is the reason why H0 is called a single-particle
operator: While the Coulomb interaction W involves two particles, H0 only involves the
interaction of one particle with the external field.

4Note that (to be correct) we would have to write (H0)12 = 〈1|h0|2〉, where h0 is the single-particle
operator in (5.3) and not the many-particle operator H0 =

∑
h0 (summed over all particles). Usually when we

mean h0, we write H0 instead.
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We want to consider (5.5) more generally for any effective single-particle Hamiltonian Heff .
This Hamiltonian may depend on spin because, even though the external field arising from
the nuclei is independent of spin, we may wish to consider the situation where the electrons
move in an effective spin dependent field, as for example in spin-polarized DFT. Hence, we
rewrite (5.5) as:5

(Heff)12 = δσ1σ2(Heff)σ1
i1i2

where (Heff)σij =

∫
d3r ϕ∗

i (r)
(
−∇2+vσ(r)

)
ϕj(r) (5.7)

Where vσ(r) is some spin-dependent effective potential like vσS(r) in Eq. (2.44).

Let us now focus on the orbitals ϕi(r) in which the field operators (5.2) are expanded. We
consider these orbitals to be either Bloch or Wannier orbitals constructed from a single-
particle Hamiltonian H ′ independent of spin. The Hamiltonian H ′ is not necessarily Heff

itself. However, we demand that the underlying crystal structure and lattice constant in Heff

and H ′ agree, such that both Heff and H ′ commute with the same translation operator TR.
For later reference, we distinguish between two cases:

A. Case A shall be the case in which H ′ = Heff , i.e. the basis functions stem from Heff

itself.

For example, we may expand the field operators in terms of Bloch eigenstates ψnk of
the single-particle operator H0 = −∇2 + vext(r) itself:

Φ†
σ(r) =

∑

nk

ψ∗
nk(r)c†nkσ , Φσ(r) =

∑

nk

ψnk(r)cnkσ (5.8)

This is called a “Bloch eigenbasis”. Inserting (3.7) into (5.3) yields

〈ψnk|H0|ψmk′〉 = δnmδkk′En(k) . (5.9)

Hence, in a Bloch eigenbasis representation, the matrix H0 becomes diagonal.

On the other hand, we can expand the field operators in terms of Wannier functions. In
this case, we write the letter a for the creation and annihilation operator:

Φ†
σ(r) =

∑

Rn

w∗
Rn(r)a

†
Rnσ , Φσ(r) =

∑

Rn

wRn(r)aRnσ (5.10)

This is a “Wannier basis”, in which the matrix H0 will not be diagonal, since Wannier
states are not eigenfunctions of H0.

B. Case B shall be the general case in which the basis functions do not necessarily stem
from Heff itself. Hence, case B includes case A.

The Bloch basis is not a Bloch eigenbasis anymore but since we demand that both Heff

and H ′ commute with the same translation operators TR, the matrix (Heff)12 will still
be diagonal in k but not necessarily in the band index n:

〈ψnk|Heff |ψmk′〉 = δkk′〈ψnk|Heff |ψmk′〉 (5.11)

Where we used Bloch’s theorem (3.4) as well as [Heff , TR] = [H ′, TR] = 0.

5Note carefully that our minimal basis ϕi is always independent of spin, and (Heff)12 is always diagonal in
spin. However, the two spin sub blocks are in general unequal, i.e. (Heff)↑ij 6= (Heff)↓ij .
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5.2 Single-Particle Hamiltonian

We now turn to the evaluation of matrix elements of a single-particle effective Hamiltonian
Heff (which for convenience we will call just H) in Wannier representation, i.e. considering
matrix elements of H with Wannier functions |Rn〉. Since the H(r) = H(r+R), H12 only
depends on the difference of the sites R1 and R2:

Hσ
R1n1,R2n2

= Hσ
(R1−R2)n1,0n2

≡ Hσ
(R1−R2)n1,n2

(5.12)

Hence, this property allows us to write our hopping matrix element in a different form
with fewer indices. Nevertheless, there is still redundancy in H σ

Rnm (or HRnm) since H is
Hermitian:

Hσ
Rnm = Hσ∗

−Rmn (5.13)

We can use this relation for numerical tests and, in particular, for reducing computing time
and memory storage.

When the Wannier functions have been constructed from H itself, i.e. case A, using a gauge
transformation of the first kind only (isolated treatment), the HRnm’s are equivalent to the
Fourier components of the band structure6

HRnm = 〈Rn|H|0m〉 = δnm
Ω

(2π)3

∫

BZ

d3k eikREn(k) . (5.14)

Where we used (4.1) and H|ψnk〉 = En(k)|ψnk〉. Put in other words: If we treat all bands
isolated, the HRnm can be directly calculated from the band structure, but only if we cal-
culate the matrix elements of the same Hamiltonian H from which we have constructed the
Wannier functions.

However, we are interested in obtaining matrix elements from maximally localized (gener-
alized) Wannier functions constructed by gauge transformations of the second kind which
leads to generalized Bloch states that are no longer eigenstates ofH with eigenvalue En(k).
Moreover, we wish to evaluate matrix elements for the case B. Hence, Eq. (5.14) is not par-
ticularly helpful. For these reasons, we have developed a method which enables us to eval-
uate HRnm in a more rigorous way, i.e. using their original definition as a matrix element

Hσ
Rnm =

∫
d3r w∗

Rn(r)
(
−∇2 + vσ(r)

)
w0m(r) (5.15)

without being restricted to the conditions mentioned above anymore. We will start with
our basic formalism for LMTO-ASA wave functions which will prove its usefulness in the
evaluation of Coulomb matrix elements, too. Evaluating (5.15), we will neglect the spin
index because we will be able to calculate the matrix elements for any external field.

6We note that from (3.42), it follows that HRnn = HαRnn for the rotations α in the point group of the
crystal, see [30] Eq. (5.1.39). Also, HRnn is gauge invariant since the band structure is completely unaffected
by gauge transformations. These special properties do not hold for the general case below, however.
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5.2.1 Basic Formalism

The basic formalism we are about to develop takes advantage of two facts:

i.) The Wannier functions are decomposed into contributions arising from every muffin-
tin sphere (4.6). Furthermore, inside each atomic sphere, we have an expansion in
terms of spherical harmonics (C.24). This is the “ASA aspect” we take advantage of.

ii.) The radial part of the wave function is a linear combination of φν`(r) and φ̇ν`(r), see
(4.30). This is the “LMTO aspect” we take advantage of.

Hence, this formalism can also be used to evaluate matrix elements of Bloch functions;
their delocalized nature complicates things in the case of Coulomb interaction matrix ele-
ments, however. The formalism is designed to speed up the numerical evaluation of matrix
elements, which will become particular important when we use the formalism to evaluate
interaction matrix elements. But now, we consider the matrix elements:

HRnm = 〈Rn|H|0m〉 =

∫
d3r w∗

Rn(r)Hw0m(r) , H = −∇2 + v(r) (5.16)

Since H commutes with the translation operator, we may use (4.6) and (4.4) to find

HRnm =
∑

i

∫
d3r w∗

n(Ri −R; r)Hwm(Ri; r) , (5.17)

where the integral is taken over a single sphere only. In order to calculate Eq. (5.17), we
must evaluate integrals of the form

I =

∫
d3r f∗1 (r)f2(r) where fi(r) =

∑

L

RiL(r)YL(r̂) , i = {1, 2} . (5.18)

That is, the functions fi(r) are given by a spherical harmonics expansion. From the above
and the ortho-normality of the spherical harmonics, it follows that:

I =
∑

L

∫
dr r2 R∗

1L(r) R2L(r) (5.19)

Having completed the ASA aspect, we now turn to the LMTO aspect.

Since the expansion inside each atomic sphere is given by Eq. (4.30), the radial functions
R(r)1L in (5.19) will always be given in terms of φν`(r) and φ̇ν`(r). Let us (for conve-
nience) drop the index ν and define

φ`;0(r) ≡ φ`(r) = φν`(r) , φ`;1(r) ≡ φ̇`(r) = φ̇ν`(r) . (5.20)

Now, the functions R(r)2L are generally not given in these terms, since we have to consider
the Hamiltonian acting on the second Wannier function in Eq. (5.17). However, as will be
shown later, H can be considered acting onto the functions (5.20). Therefore, we write:

χ`;p(r) = Hφ`;p(r) p = {0, 1} (5.21)
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The explicit expression for χ`;p(r) is given by (5.31) below, for now we assume that χ`;p(r)
is known. If we introduce

AiL;0 = AiL , AiL;1 = BiL (5.22)

and use (4.30), we see that:

R1L(r) =
∑

p

A1L;p φ`;p(r) and R2L(r) =
∑

p

A2L;p χ`;p(r) (5.23)

We will use this form to calculate the integral (5.19) very efficiently. It is clear that any
integral can be reduced to a linear combination of “basic” integrals. Those basic integrals
consist of the (very limited) combinations of the φ(r)’s and χ(r)’s. Inserting (5.23) into
(5.19) yields:

I =
∑

Lp1p2

A∗
1L;p1A2L;p2

∫
dr r2 φ`;p1(r) χ`;p2(r) =

∑

Lp1p2

aL;p1p2b`;p1p2 (5.24)

where

aL;p1p2 ≡ A1L;p1A
∗
2L;p2 and b`;p1p2 ≡

∫
dr r2 φ`;p1(r) χ`;p2(r) (5.25)

The time consuming task to evaluate integrals is now limited to evaluating only four basic
integrals b`;p1p2 for each `.7 Note that φ`;p(r) and thus the basic integrals are real.

Having also completed the LMTO aspect, we mention that:

i.) In the singe-particle operator case, things are easy and labeling the basic integrals and
coefficients in such a manner seems unnecessary. However, one may regard this case as
a small exercise since in the two-particle operator case, i.e. Coulomb interaction, things
will become more complicated and labeling the corresponding expressions helps to
keep track of things.

ii.) Looking at the LMTO-method again, we realize that when we choose H = 1, i.e. a
non-physical Hamiltonian in (5.21), so that χ`;p(r) = φ`;p(r), we find

b`;00 = 1 , b`;01 = b`;10 = 0 , b`;11 = 〈φ̇2
ν`〉 . (5.26)

Note that 〈φ̇2
ν`〉 arises from the LMTO-treatment of the Hamiltonian which is used

to constructed the Wannier functions (which is of course not 1). These relations are
useful to check the numerical evaluation of b`;p1p2 .

7E.g. using orbitals up to d, only 12 integrals b`;p1p2
need to be evaluated, no matter how many times they

will be required later in (5.17) and (5.24).
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Hamiltonian acting on radial basis functions:

Again, we distinguish between our two cases (introduced on page 67):

A. The effect of H on the second Wannier function can be carried out easily because we
are working in a linear basis. Since in the LMTO method (H − Eν`)φ`(r) = 0 and
(H −Eν`)φ̇`(r) = φ`(r),8 we find simple expressions for (5.21):

χ`;0(r) = Eν`φ`;0(r) , χ`;1(r) = φ`;0(r) +Eν`φ`;1(r) (5.27)

From which it is easy to show that

b`;00 = Eν` , b`;01 = 1 , b`;10 = 0 , b`;11 = Eν`〈φ̇2
ν`〉 . (5.28)

For some applications, this is all we are interested in. We have used these expressions
in Refs. [28, 47], however, there we have used a slightly different formalism, i.e. the
effect of H was taken into account by acting onto the A2L;p coefficients.9 The quantities
Eν` and 〈φ̇2

ν`〉 are so-called potential parameters which follow directly from the LMTO
calculation; hence, this special case may serve as a numerical test case for the general
treatment which follows.

B. This is the general case in which the basis Wannier functions, and hence φ`;p(r), do not
necessarily stem from H = −∇2 + v(r) itself (but from H ′). Thus, we have to consider
the operator H acting on any wave function. Within the ASA, v(r) is spherical symmet-
ric inside every sphere. Moreover, the Laplacian ∇2 takes a simple form in spherical
coordinates.10 Hence, the Hamiltonian H inside the atomic sphere (i.e. r < S) is:

H = −∇2 + v(r) = −1

r

∂2

∂r2
r +

L2

r2
+ v(r) (5.29)

This Hamiltonian is acting on the expansion (5.18). Thus:11

H
∑

L

RL(r)YL(r̂) =
∑

L

(
−1

r

∂2

∂r2
r +

`(`+ 1)

r2
+ v(r)

)
RL(r)

︸ ︷︷ ︸
HRL(r)

YL(r̂) (5.30)

Note that this function is already present as a spherical harmonics expansion, again.
Accordingly, the effect of H can be carried out on RL(r), and since RL(r) is a linear
combination of φ`(r) and φ̇`(r), the effect of H may be carried out on the radial basis
functions φ`;p(r) directly:

χ`;p(r) = Hφ`;p(r) =

(
−1

r

∂2

∂r2
r +

`(`+ 1)

r2
+ v(r)

)
φ`;p(r) (5.31)

This is the desired expression we generally use for calculating χ`;p(r).

8See Eq. (3.11)-(3.12) in Ref. [31].
9See Eq. (3.31) in Ref. [47].

10See e.g. Eq. (6-37) in [51] or Eq. (16.30) in [52].
11Note that: L2Y m

` (Ω) = `(`+ 1)Y m
` (Ω)
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5.2.2 Band Structure

We will now discuss how the band structure can be obtained from the matrix elements of an
effective Hamiltonian HRnm for the general case B (which includes case A). To this end,
we return to the Bloch representation. Since H is still diagonal in k, i.e. (5.11), we may
define a matrix Hk

nm for each k-point:

Hk
nm ≡ 〈ψnk|H|ψmk〉 =

∑

R

e−ikRHRnm (5.32)

Where we used (4.2) but not (4.11), hence generalized Bloch and Wannier functions appear
in (5.32). Thus, we need to diagonalize (the Hermitian) matrix Hk

nm to obtain the energy
eigenvalues for this k-point. By means of the unitary matrix in Eq. (4.11), we find:

En(k) =
(
UkHkUk†

)
nn

(5.33)

Remarks:

i.) We can evaluateHk
nm, and henceEn(k) for any given k-point, without being restricted

to the k-points on the cubic mesh in the Marzari-Vanderbilt method. Hence, we may
actually calculate the band structure along high symmetry lines (inside the IBZ) ob-
tained from HRnm. This way, we are in a position to re-calculate the original band
structure for case A (and make a comparison).

ii.) When our Wannier functions are fairly well localized, we expect that HRnm decays
for large enough |R|. Hence, we hope to be able to truncate the R-sum in (5.32) after
a few shells (see appendix C.6). We will show some examples concerning this point in
the following.

iii.) Consider case A and an isolated treatment for the construction of the Wannier func-
tions, i.e. a gauge transformation of the first kind only. Accordingly, the Bloch states
in (5.32) are eigenstates of H (and not generalized Bloch states) and it follows that
Hk
nm = δnmEn(k).

5.2.3 Examples

In the following examples, we calculate the band structure from hopping matrix elements
HRnm in Wannier representation. Since (in case A) the original band structure can be re-
obtained from HRnm, we are in a position to check the correctness of the numerical cal-
culations and, moreover, gain some experience about the approximation of truncating the
R-sum in (5.32). Furthermore, we will show that the choice of the minimal basis set is cru-
cial. That is, in case B the band structure of H is poorly reproduced when H ′ is extremely
different from H .
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Example 1

We wish to start by looking at the easiest case, i.e. for case A when the Wannier functions
arise from an isolated treatment of the bands. Here, the matrix elements HRnm are simply
the Fourier components of the band structure (5.14). Returning to Bloch representation, i.e.
inserting (5.14) into (5.32), gives12

Hk
nm =

∑

R

e−ikR δnm
N

∑

k′

eik
′REn(k

′)

︸ ︷︷ ︸
HRnm

= δnmEn(k) , (5.34)

which is already diagonal. This is also obvious from (5.9), but we wish to follow the general
procedure. Inserting (5.34) into (5.33) yields:

En(k) =
(
UkHkUk†

)
nn

= Hk
nn = En(k) (5.35)

The band structure equals the band structure – not very illuminating. However, there is more
we can look at. That is, we first evaluate HRnm from Eq. (5.14) and then use Eq. (5.32),
truncated to a certain number of shells in the R-sum, to re-evaluate the band structure in
order to see the effect of this truncation. Or, put in other words, to see how quickly the
Fourier components decay.

We have used the discretized form of (5.14) to evaluate the Fourier components of the
Hartree band structure of copper (Fig. 3.10), i.e.

HRnn =
1

N

∑

k

eikREn(k) , (5.36)

where we used a cubic k-mesh with ∆k = 0.1 (2π/a) which equals using 203/2 = 4000
points in Brillouin zone (for FCC). The re-calculated band structure is shown in Fig. 5.1
where 5 shells, i.e. 79 sites (see appendix C.6), have been included in the R-sum in (5.32).
The overall band structure is reproduced fairly well, although at points along the symmetry
lines where band crossings occur, the disagreement is serious. Even if we truncate the R-
sum after 30 shells, i.e. 1061 sites, the mismatch at these points remains significant (Fig.
5.2), despite the fact that such a large number of sites have been included. One would hope
to achieve a better agreement of the two curves. The reason for this discrepancy is obvious:
Consider Fig. 4.1 in which the 2nd band is highlighted. Since we chose the band index
such that En(k) ≤ En+1(k), all connected bands become very “unnatural” in their form,
in particular band crossings produce sharp kinks in the bands. In the treatment above, each
of these bands is Fourier transformed and these kinks, as is well known, have a slowly
decaying Fourier spectrum. Thus, truncating the R-sum in (5.32) leads to errors.

Furthermore, the isolated treatment is not desired since the resulting localized Wannier func-
tions are only poorly localized, i.e. they are not maximally localized Wannier functions in
their original sense, see section 4.3. For this reason, we prefer the composite treatment.

12Note that
∑

R
e−i(k−k

′)R = Nδkk′ and that we used the discretized version of (5.14).
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Figure 5.1: Hartree band structure of copper (dashed) and
∑

R e
−ikRHRnn

where the sum is truncated after 5 shells (solid), with energy relative to the
Fermi energy.
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Figure 5.2: Same as Fig. 5.1, except now the sum is truncated after 30 shells.
Note that the mismatch of the two curves is still significant at points along the
symmetry lines where band crossings occur.
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Figure 5.3: Hartree band structure of copper (dashed) and energy eigenvalues
of
∑

R e
−ikRHRnm where the sum is truncated after 5 shells (solid). Again

with energy relative to the Fermi energy.

Example 2

Example 1 has clearly shown that an isolated treatment of the bands leads to slowly decaying
matrix elements HRnn. We now take a look at the case where the Wannier functions arise
from a composite treatment of Bloch eigenfunctions of H . Except this detail, the current
example equals the preceeding. Since the basis orbitals are generalized Wannier functions,
HRnm is no longer diagonal, and the HRnm’s need to be evaluated as matrix elements as
described above. We can, however, since we are still considering case A, use Eq. (5.28)
avoiding the explicit evaluation of (5.21) and the integration in (5.25).

Figure 5.3 shows the eigenvalues of 5.32 where only 5 shells (79 sites) have been included
in the R-sum. The agreement (for this truncation) is much better than in the preceeding
example. Especially at band crossings an accurate reproduction is achieved. From Tab. 4.1,
we see that the Wannier functions are very well localized. Accordingly, the matrix elements
HRnm = 〈Rn|H|0m〉 decay with larger R.

In this connection, we note that Tab. 4.1 shows the averaged densities and not averaged
wavefunctions themselves. Also note that, unlike the Fourier components of the band struc-
ture, the HRnm (we are dealing with now) are gauge-dependent.

To summerize, we note that the use of such a small number of shells in the R-sum was only
made possible by using rapidly decaying Wannier functions which, in turn, lead to rapidly
decaying matrix elements 〈Rn|H|0m〉.
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Figure 5.4: Hartree density of states (dashed) and density of states obtained
from energy eigenvalues of (5.32) where the sum is truncated after 9 shells
(solid) for some x.

Example 3

We now take a look at the general case B where the Wannier functions are obtained fromH ′

which is not necessarily equal to the Hamiltonian H whose matrix elements are evaluated.
The Hamiltonian H will be the same as in the preceeding examples 1 and 2. We choose H ′

to be dependent on an extra variable x which controls the disagreement of H ′(x) with H ,
i.e.:

H ′(x) = −∇2 + (1 − x) v0 + x vH (5.37)

Where v0 and vH are given by (3.48) and (3.47), such that H ′(1) = H , i.e. the Hartree
Hamiltonian, and H ′(0) = H0 is the effective Hamiltonian for the situation when the
Coulomb repulsion among the valence electrons is artificially switched off (see section 3.5).
For some x, we have: (i) obtained the Wannier functions (which depend of x). (ii) calculated
the matrix elements for H . (iii) re-calculated the band structure via (5.32). (iv) calculated
the density of states using the tetrahedron method. Clearly for x = 1, the re-obtained DOS
is in very good agreement with the DOS obtained from the band structure directly (Fig. 5.4).
This is just the example 2 (expressed in terms of the DOS).
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Figure 5.5: Density of states for spin-polarized iron from LSDA (dashed) and
the DOS obtained from the matrix elements 〈Rn|Hσ

LSDA|0m〉 (solid). Again,
the sum in (5.32 was truncated after 9 shells.

For x further away from 1, the disagreement between the curves becomes more and more
significant, since the generalized Wannier functions span the one-particle space of H ′(x),
limited to a few orbitals. So, when x is away from 1, the space spanned by these orbitals is
not appropriate for expanding H .

Consider the situation for x = 0 (not shown in figure): The 3d-like Wannier functions
are very core-like, as Fig. 3.7 suggests. Hence, being extremely localized, they don’t allow
hopping matrix elements 〈Rn|H|0m〉 with next neighbor R’s (for 3d-orbitals) to be large.
Accordingly, the 3d-bands turn out to become too narrow for decreasing x.

Example 4

While the preceeding examples have been designed to illustrate the various cases and to
check the numerical correctness of our calculations, the example we will now look at is of
more practical use.

We consider the spin-polarized DFT calculation for BCC iron, whose density of states is
shown in Fig. 7.2. A result of this LSDA calculation is the potential vσS(r) which defines



78 5. Matrix Elements

the spin-dependent effective Hamiltonian Hσ
LSDA. Our minimal basis of Wannier functions

is considered independent of spin, however. Hence, we have (in addition) performed a self-
consistent Hartree calculation for iron which is not spin-polarized, since vσxc is the only spin-
dependent term in (2.42), see page 23. Through the Hartree Hamiltonian H ′, we obtain a
basis set of (spin-independent) Wannier functions. The spectra of H ′ and Hσ

LSDA are not too
different13 , hence we may expand Hσ

LSDA in terms of these Wannier functions and obtain
the spin-polarized DOS.

Figure 5.5 shows a comparison of the DOS from LSDA and the DOS re-calculated from
the matrix elements 〈Rn|Hσ

LSDA|0m〉 for both spin directions. The agreement of the two
curves is very good, which means that an expansion in terms of spin-independent orbitals for
a magnetic material is possible. This is desirable, since it reduces the number of orbitals by
a factor of two. Moreover, if we had to include all the spin-dependent orbitals, the number
of Coulomb matrix elements, which is already large, would increase by a factor of 24 = 16.

We should mention that iron was deliberately chosen for this example, since iron has the
largest magnetic moment. The expansion works even better for cobalt and nickel.

5.3 Coulomb Interaction

Our methods developed to evaluate the Coulomb interaction term in Wannier representation
will be described next. The Coulomb matrix elements are given by:

W12,34 =

∫
d3r d3r′ w∗

1(r) w
∗
2(r

′)
e2

|r− r′| w3(r
′) w4(r) (5.38)

Here, we use the abbreviated notation 1 to mean R1n1 and 2 to mean for R2n2, etc. Let
us first take a brief look at general properties of the matrix elements which are useful for
minimizing computing time and memory storage. From (5.38) and (4.4), it follows that

W12,34 = W(R1−R4n1)(R2−R4n2),(R3−R4n3)(0n4) . (5.39)

That is, we may always translate the lattice site indices in a way that R4 → 0. Hence, we
can define:

W12,34 ≡WR1−R4;R2−R4;R3−R4
n1n2,n3n4

(5.40)

Moreover, since r and r′ in (5.38) can be interchanged, we have W12,34 = W21,43 and since
W is Hermitian, we have W12,34 = W ∗

43,21. It follows that:

WR1;R2;R3
n1n2,n3n4

= WR2−R3;R1−R3;−R3
n2n1,n4n3

= (5.41)

(
W−R1;R3−R1;R2−R1
n4n3,n2n1

)∗
=
(
WR3−R2;−R2;R1−R2
n3n4,n1n2

)∗

13We have not plotted the DOS ofH ′, but we note that all bands are in the same energy regions (within some
eV), unlike the huge discrepancy in example 3.
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We will use these relations in chapter 6. Now, we explore the fact the Wannier functions
are given by (4.6). The spatial integrals in (5.38) are extended over all space. Inserting (4.6)
into (5.38) and using translations (4.4) yields:

W12,34 =
∑

RR′

W (12, 34;R,R′) (5.42)

The sum is over all lattice sites and the expression W (12, 34;R,R′) is defined by

W (12, 34;R,R′) ≡
∫
d3r d3r′ w∗

n1
(RA; r) w∗

n2
(RB ; r′) × (5.43)

× e2

|r − r′ + R −R′| wn3(RC ; r′) wn4(RD; r) ,

and the integrals are now only over the muffin-tin sphere at the origin. Here, we introduced
the definitions:

RA ≡ R−R1 , RB ≡ R′ −R2 , RC ≡ R′ −R3 , RD ≡ R −R4 (5.44)

When evaluating W (12, 34;R,R′), we distinguish whether the sites R and R′ are:

• Equal: R = R′

• Unequal: R 6= R′

Since the numerical evaluation of Coulomb integrals is very time consuming, we truncate
the spacial extent of our Wannier functions. In terms of Eq. (5.43), this has the consequence
that whenever one of the RA...D is beyond a certain number of shells, the contribution
W (12, 34;R,R′) (to the total integral) is set to zero.14 Further, this truncation has the con-
sequence that the RR′-sum in (5.42) may be truncated too. In the following, we propose
two methods to evaluate W (12, 34;R,R′). The first method, i.e. the spherical expansion
method, is computationally very efficient and accurate, however, we have only applied this
method to the case R = R′. Extending this method to the case in which R 6= R′ seems
difficult, but possible by using the expressions in Ref. [53]. The second method is based on
Fourier transforming the Coulomb interaction e2/r and using the “fast Fourier transforma-
tion” (FFT). This method is not restricted to the case R = R′, but it is computationally more
time consuming and not quite as accurate as the first method. As we will discuss in section
6.3.2, only contributions (5.43) for R = R′ will be required for our Hartree-Fock approach,
however. Before turning to these methods, we wish to show how W (12, 34;R,R′) can be
approximated for the case R 6= R′.

If we assume that the Wannier functions have a high charge density near the center of each
atomic site, the contributions in (5.43) arising from small |r| and |r′| will be largest. Hence,
we may approximately write

|r − r′ + R −R′| ≈ |R−R′| where R −R′ 6= 0 . (5.45)

14Remember that our Wannier functions 0n are always constructed in a way that their contribution at the site
0 is largest.
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In the limit |R − R′| → ∞, this approximation will be correct, since |r| and |r′| are
restricted to the Wigner-Seitz sphere. Inserting (5.45) into (5.43) gives

e2

|R −R′|

∫
d3r w∗

n1
(RA; r) wn4(RD; r)

∫
d3r′ w∗

n2
(RB ; r′) wn3(RC ; r′) (5.46)

as an approximation for W (12, 34;R,R′). Evaluating (5.46) is easy, since the two integrals
can be calculated independently using Eqs. (5.24) and (5.26).

5.3.1 Spherical Expansion Method

As mentioned above, we will consider

I = W (12, 34;R,R) =

∫
d3r d3r′ w∗

n1
(RA; r) w∗

n2
(RB ; r′) × (5.47)

× e2

|r− r′| wn3(RC ; r′) wn4(RD; r) ,

where the integrals are taken over the central site. Inserting the expansion (5.18) for the
Wannier functions and making use of the well-known expansion15

1

|r − r′| =

∞∑

k=0

4π

2k + 1

rk<

rk+1
>

k∑

m=−k

Y ∗
K(r̂′) YK(r̂) , K = {k,m} (5.48)

where r> (r<) is the length of the greater (smaller) of the two vectors r and r′, we find
(using the abbreviation L1...4 to mean L1, L2, L3, L4):

I =
∑

k,L1...4

e2
∫
dr r2 R∗

1L1
(r) R4L4(r)

∫
dr′ r′2 R∗

2L2
(r′) R3L3(r

′) × (5.49)

× rk<

rk+1
>

4π

2`+ 1

k∑

m=−k

CL4L1K CL2L3K

Where the integrals are taken from 0 to the Wigner-Seitz radius S. The coefficients CLL′L′′

are called Gaunt coefficients, see appendix B, which are real and vanish unless the vector
addition rules are satisfied. If we define16

CkL1...4
≡ 4π

2k + 1

k∑

m=−k

CL4L1K CL2L3K (5.50)

IkL1...4
≡ e2

∫
dr r2 R∗

1L1
(r) R4L4(r)

∫
dr′ r′2 R∗

2L2
(r′) R3L3(r

′)
rk<

rk+1
>

, (5.51)

the integral takes the form:

I =
∑

k,L1...4

CkL1...4
IkL1...4

(5.52)

15See for example Eq. (3.70) in Ref. [52].
16Note that this definition differs by the factor of 4π/(2k + 1) from the definition we used in Refs. [47, 28].
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LMTO’s s p s p d s p d f

kmax 2 4 6

CkL1...4
768 32,805 458,752

non-vanishing 47 806 6,778

diff. abs. values 7 64 414

Table 5.1: Here, kmax is the k-cutoff in (5.53). Next, the total number of coeffi-
cients Ck

L1...4
is given, which is easy to obtain, e.g. 7·164 = 458,752 . Hereafter,

the number of non-vanishing Ck
L1...4

is shown. The last row shows the number
of different absolute values which occur within the non-vanishing C k

L1...4
.

The task is now to determine Ck
L1...4

and IkL1...4
. We start by looking at the easy part, i.e. the

constants Ck
L1...4

. Using Eq. (B.7), we can write (5.50) as

CkL1...4
= δm1−m4,m3−m2 c

k(L1, L4) c
k(L3, L2) . (5.53)

The coefficients ck(`′m′, `′′m′′) are tabulated in Ref. [54], and in order to be non-vanishing,
k must satisfy the conditions:17

|`′ − `′′| ≤ k ≤ `′ + `′′ and k + `′ + `′′ = 2g (g integral) (5.54)

Thus, in the practical case in which the expansion of the wave functions is truncated af-
ter e.g. f -orbitals, the seemingly infinite series occurring in (5.48), and thus the k-sums
following, are limited. Furthermore, a large number of the remaining C k

L1...4
vanish (Tab.

5.1). Since many of the coefficients Ck
L1...4

vanish, one should numerically only evaluate the
integrals IkL1...4

for the indices k, L1, L2, L3, L4 for which Ck
L1...4

are non-vanishing.

We now consider the remaining term IkL1...4
. To do this, we will use the formalism developed

in section 5.2. In complete analogy to Eqs. (5.24), (5.25), we now find

IkL1...4
=
∑

p1...4

aL1...4p1...4 b
k
`1...4p1...4

, (5.55)

where

aL1...4p1...4 = A∗
1L1 ;p1A

∗
2L2;p2A3L3;p3A4L4;p4 (5.56)

bk`1...4p1...4
= e2

∫
dr r2 φ`1;p1(r) φ`4;p4(r)

∫
dr′ r′2 φ`2;p2(r

′) φ`3;p3(r
′)

rk<

rk+1
>

. (5.57)

It should be noted that these basic integrals are symmetric with respect to some of their
indices. If we introduce the joined index n1 = {`1, p1}, etc. then:

bkn1n2n3n4
= bkn4n2n3n1

= bkn1n3n2n4
= bkn4n3n2n1

= (5.58)

= bkn2n1n4n3
= bkn2n4n1n3

= bkn3n1n4n2
= bkn3n4n1n2

17See Eq. (10) on p. 176 in [54].
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W (12, 34;R,R)

CkL1...4
IkL1...4

CL4L1K CL2L3K
aL1...4p1...4 bk`1...4p1...4

kL1L2L3L4

m p1...4

Figure 5.6: Decomposition of integral (5.47). On top of each of the horizontal
lines, the indices over which a summation is performed are shown.

Also, we should mention that the (rather cumbersome) special cases appearing in the last
term in (5.57), i.e. r′ < r or r′ > r, may be avoided by splitting the r ′ integral into two
integrals. We find a form which is more convenient for numerical evaluation:

bkn1...4

e2
=

S∫

0

dr r1−k φn1(r) φn4(r)

r∫

0

dr′ r′k+2 φn2(r
′) φn3(r

′) + (5.59)

+

S∫

0

dr rk+2 φn1(r) φn4(r)

S∫

r

dr′ r′1−k φn2(r
′) φn3(r

′)

Finally, we can take a look at Fig. 5.6 which shows the steps involved in decomposing the in-
tegral (5.47). Remember that the integral (5.47) is not the complete Coulomb integral (5.38),
it is only a contribution to the complete integral in Eq. (5.38). If we would consider atomic
wave functions, it would be the complete Coulomb integral, however. For atomic wave func-
tions, many of the expressions become very simple, since a (non-relativistic) atomic wave
function is not an expansion in terms of spherical harmonics, but rather a single radial func-
tion multiplied by a spherical harmonic. We used this method for evaluating the Coulomb
matrix elements for the hydrogen atom wave functions, see appendix C.2.

5.3.2 FFT Method

The method we have just described is very accurate and computationally efficient, but it is
restricted to the case R = R′. Furthermore, it uses the spherical expansion of the linearized
wave functions, and may seem a little sophisticated18 . Sometimes, however, Coulomb ma-

18Hence, implementation may seem hard, with all the Gaunt coefficients, summations, integrations, etc. .
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trix elements may not be required to such an accuracy, and if only a few matrix elements
are needed, the following method, which evaluates the matrix elements in a rigorous way, is
recommended. Moreover, it is always good to be able to calculate the same quantities with
different methods, allowing to compare results, e.g. for debugging.

To calculate W (12, 34;R,R′) for any lattice sites R and R′, we make use of the Fourier
transformation19

∫
d3q

eiqr

q2
=

2π2

|r| (5.60)

and find for Eq. (5.43):

W (12, 34;R,R′) =
e2

2π2

∫
d3q

1

q2
eiq(R−R′) f1(q) f2(−q) (5.61)

where

f1(q) =

∫
d3r eiqr w∗

n1
(RA; r) wn4(RD; r) (5.62)

f2(q) =

∫
d3r eiqr w∗

n2
(RB ; r) wn3(RC ; r) (5.63)

These functions are just the Fourier transforms of a product of some Wannier functions
in a muffin-tin sphere. These can be calculated very efficiently by evaluating the Wannier
functions on a cubic mesh in r-space with some ∆x (the distance between the mesh points)
and then applying a standard FFT algorithm. To do this, we have used the routine fourn
in Ref. [48]. For details on how to apply the FFT to continuous functions, Ref. [55] is
very useful. The result of this Fourier transformation is f1,2(q) on a cubic mesh in q-space
with some ∆q. We perform the remaining q-integral in the following way. Let us call the
integrand in (5.61) without the q−2 term

F (q) = eiq(R−R′) f1(q) f2(−q) . (5.64)

Since F (q) is a smooth function at q = 0, a divergence arises in the complete integrand
from q−2. In order to treat this divergence, we split the integral by subtracting and adding
F (0):

∫
d3q

F (q)

q2
=

∫
d3q

F (q) − F (0)

q2
+ F (0)

∫
d3q

1

q2
(5.65)

The first non-vanishing term of a polynomial expansion of the numerator F (q) − F (0) is
of order q2 (see section 5.3.3). Hence, the polynomial expansion of the integrand starts with
a constant and the divergence is avoided.

19It is straightforward to do the integral using spherical coordinates and using

∞∫

0

dx
sinx

x
=
π

2
.
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All integrals are over a cube with length 2p = N∆q. The first integral in (5.65) is evaluated
by transforming the integral into a sum over little cubes with volume (∆q)3. At q = 0, the
value of the integrand is calculated via the second derivative of F (q) at q = 0 numerically.

The remaining integral in (5.65) is simply a constant given by:

+p∫

−p

dqx

+p∫

−p

dqy

+p∫

−p

dqz
1

q2
= p

+1∫

−1

dqx

+1∫

−1

dqy

+1∫

−1

dqz
1

q2
= p · C (5.66)

Where a change in the variables was made, and C = 15.34825, which we have evaluated in
the appendix C.4.

The cubic grid in real space we use in (5.62) (and in (5.63)) has N 3 = 1283 points with
spacing ∆x = 0.1a0. In applying the FFT to continuous Fourier transformations, the spac-
ing of the q-mesh is determined by N and ∆x, i.e. ∆q = 2π/(N∆x) ≈ 0.49/a0 . Using the
FFT, one has to be very careful about the choice of these values, since the FFT is a discrete
Fourier transformation. In particular, it is important to make sure that the results of a FFT
calculation do not depend on the values N and ∆x (see section 5.3.4).

Note that each integral in (5.62), (5.63) could be calculated from the spherical-harmonic
expansions (using the expressions in appendix C.5). However, a large number of such inte-
grals, for all the q-points, would be required and the method would become (computation-
ally) extremely expensive. An FFT algorithm generates all the q values needed with a single
calculation and is much more efficient. However, because of finite mesh sizes and compro-
mises between real and q-space integrals, it is not as accurate as the spherical expansion
method, when the latter is applicable.

Yukawa Potential

Finally, it should be mentioned that this method can easily be extended to a Yukawa poten-
tial (which is a screened Coulomb potential), i.e. instead of (5.60) we use20

e−αr

|r| =
1

2π2

∫
d3q

eiqr

q2 + α2
. (5.67)

Note that Eq. (5.65) is not required anymore, because the divergence in the integrand has
disappeared. Nevertheless, when (5.65) is evaluated as a sum over small cubes, a large
contribution arises from the cube around q = 0 when α is small. Therefore, this contribution
is treated separately to achieve higher precision: We assume F (q) to be constant within this
cube (of size (∆q)3) and evaluate its contribution to the total integral as:

F (0) 4π

q0∫

0

dq
q2

q2 + α2
= F (0) 4π

(
q0 − α arctan

q0
α

)
, q0 = ∆q

(
3

4π

) 1
3

(5.68)

That is, we approximate the cube by a sphere of equal volume (with radius q0) and treat the
remaining integral analytically. All other cubes are treated regularly.

20Again, the integral may straightforwardly be carried out in spherical coordinates. See also Ref. [44].
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5.3.3 Analytical Test Case

We wish to illustrate both methods for a simple artificial wave function, which allows the
evaluation of all integrals analytically. Moreover, this test case serves as a reference for
checking the numerical correctness of the methods, especially the accuracy of the FFT
method. We choose the wave function to be constant within a radius of a0 (the Bohr ra-
dius) and zero elsewhere. Since we use atomic Rydberg units (in which a0 = 1), we have

ψ(r) =

{√
3
4π r ≤ 1

0 r > 1
with density n(r) = |ψ(r)|2 =

{
3
4π r ≤ 1

0 r > 1
, (5.69)

which is normalized to unity. Using both methods, we will evaluate the Coulomb energy

U =

∫
d3r d3r′

e2 n(r) n(r′)

|r − r′| = W (ψψ,ψψ;0,0) . (5.70)

Spherical expansion method:

The spherical harmonics expansion of the wave function, i.e. ψ(r) =
∑

LRL(r)YL(r̂), is
(trivially)

RL(r) = δ`,0 ·
{√

3 r ≤ 1

0 r > 1
, since Y 0

0 (ϑ, ϕ) =
1√
4π

. (5.71)

That is an “s-wave” function. Hence, the k-cutoff in (5.53) equals zero due to k ≤ ` ′+`′′ =
0. Accordingly, the multiple sum (5.52) reduces to U = C 0

0000 I
0
0000. From (5.50) and the

definition of the Gaunt coefficients, it is easy to see thatC 0
0000 = 1. We only need to evaluate

I0
0000, where we can split the integral as in Eq. (5.59):

U = I0
0000 = 9e2




1∫

0

dr r

r∫

0

dr′ r′2 +

1∫

0

dr r2

1∫

r

dr′ r′


 = 18

[
1

15
+

1

15

]
(5.72)

Hence, our final result is U = 2.4 Ryd.

FFT method:

First, we need to evaluate the Fourier transform (5.62), which is straightforwardly done in
spherical coordinates

f(q) =

∫
d3r e−iqr n(r) =

3

4π

∫

r≤1

d3r e−iqr =
3(sin q − q cos q)

q3
≡ f(q) , (5.73)

which is a smooth function everywhere. Note that f(−q) = f(q). In the limit for small q,
we find f(q) ≈ 1−q2/10, by expanding sin and cos. Thus f(0) = 1, as is also evident from
normalization. Now, for small q, the function F (q) = f 2(q) is approximately 1 − q2/5.
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Accordingly, the first non-vanishing term of the polynomial expansion of the numerator
F (q) − F (0) in (5.65) is −q2/5. Hence, the polynomial expansion of the corresponding
integrand in (5.65) starts with a constant and divergence at q = 0 is avoided. However,
doing the calculation analytically, we are not worried about this divergence, since another
q2-term arises if we perform the integration of F (q)/q2 in spherical coordinates. That is,21

U =
1

π2

∫
d3q

F (q)

q2
=

4

π

∞∫

0

dq f2(q) =
4

π

32π

15
= 2.4 Ryd , (5.74)

which equals our previous result. Performing this calculation numerically (using FFT), we
obtain a result of U = 2.38 Ryd.22 In addition, we are in a position to numerically obtain
f(q) by Fourier transforming our test wave function (on the r-mesh), as we would within
the FFT method, and compare the result with the analytical expression in Eq. (5.73). This
comparison was made as well, and the agreement is also very good.23

5.3.4 Numerical Comparisons and Results

Choice of N and ∆x in FFT Method

Firstly, note that when applying the FFT (which is a discrete Fourier transformation) onto
continuous Fourier transformations, ∆x and ∆q are not independent of each other, but
N = 2π∆x∆q. Moreover, within the FFT, N is always a power of two.

As mentioned above, it is important to make sure that the results of the FFT method do
not depend on the values N and ∆x. In order to find a good choice for these values, which
determine the spacing of the q-mesh ∆q = 2π/(N∆x), we picked out a typical Wannier
function and applied the FFT method for various values of N and ∆x.

We have chosen the 2nd Wannier function from the Hartree calculation of copper in the cen-
tral site, whose localization properties are shown in Tab. 4.1. For this Wannier function, we
evaluate the term (5.61) with R = R′ = 0, which is by far the most dominant contribution
to the total Coulomb energy in Eq. (5.42), since this Wannier function is very localized,
as can be seen from Tab. 4.1. First, we have calculated the interaction energy using the
spherical expansion method, yielding 27.60 eV, which serves as a reference. The energies
obtained from FFT method are shown in Fig. 5.7.

When ∆x is chosen too small, the (N∆x)3 cube in real space does not cover the complete
Wigner-Seitz sphere (just a small fraction), and the evaluated energy turns out smaller than
the correct value. On the other hand, when ∆x is chosen too big, the (N∆q)3 cube in q-
space becomes too small and our final q-summation misses points. This is the explanation

21Here, we used:

∞∫

0

dx
(sinx− x cosx)2

x6
=

π

15

22For a choice of N = 128 and ∆x = 0.1, see below.
23If we had bad agreement, our numerically result of U = 2.38 Ryd would probably not be in such good

agreement with the analytically result (5.74) either.
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Figure 5.7: FFT method applied to a 3d-like Wannier function of copper using
various choices ofN and ∆x (solid); The reference value is 27.60 eV (dashed).

for the behavior of the curves in Fig. 5.7 for all N . When N itself is too small, points are
neglected both in r-space and in q-space. Hence, the method does not work when N is too
small.

For large N , e.g. 128, we have the freedom to choose ∆x, and as can be seen very clearly
from Fig. 5.7, the evaluated energy is not affected by this choice. Moreover, the energy is
almost in perfect agreement with our result from the spherical expansion method. For our
further calculations, we therefore choose N = 128 and ∆x = 0.1a0, i.e. in the middle of
the flat plateau. Since the plateau is approximately one decade wide, we expect this choice
to be secure for other Wannier functions too.

Computational Remark: Since ∆x and ∆q are not independent of each other, one always
has to compromise, unless N is chosen very large. However, this may not be possible since
there are N 3 points for which complex values need to be stored: 1283 double precision
complex numbers require 32 MB of memory; and for 2563 points we already need 256 MB.
In addition, the computing time of the FFT increases with N 3 log2N , which is of course
much better than without using FFT, where computing time would increase by N 6.
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Comparison of Both Methods

m = 0 1 2 3 4 5 6 7 8

n = 0 23.91 22.81 24.18 23.85 22.95 14.42 14.00 14.06 13.66

23.85 22.75 24.11 23.79 22.88 14.39 13.97 14.03 13.63

n = 1 22.81 25.38 24.92 24.62 23.36 14.48 14.16 13.73 14.53

22.75 25.31 24.85 24.55 23.29 14.45 14.12 13.69 14.49

n = 2 24.18 24.92 27.60 25.28 24.25 15.08 14.98 14.12 14.46

24.11 24.85 27.51 25.20 24.18 15.04 14.94 14.09 14.42

n = 3 23.85 24.62 25.28 27.57 25.01 14.64 14.82 14.64 14.36

23.79 24.55 25.20 27.49 24.94 14.60 14.78 14.60 14.32

n = 4 22.95 23.36 24.25 25.01 25.19 14.33 14.03 14.21 14.26

22.88 23.29 24.18 24.94 25.11 14.30 14.00 14.18 14.23

n = 5 14.42 14.48 15.08 14.64 14.33 14.01 10.04 9.52 9.91

14.39 14.45 15.04 14.60 14.30 13.99 10.04 9.52 9.91

n = 6 14.00 14.16 14.98 14.82 14.03 10.04 13.90 9.59 9.60

13.97 14.12 14.94 14.78 14.00 10.04 13.88 9.59 9.60

n = 7 14.06 13.73 14.12 14.64 14.21 9.52 9.59 13.70 9.48

14.03 13.69 14.09 14.60 14.18 9.52 9.59 13.69 9.49

n = 8 13.66 14.53 14.46 14.36 14.26 9.91 9.60 9.48 13.77

13.63 14.49 14.42 14.32 14.23 9.91 9.60 9.49 13.75

Table 5.2: Direct inter-band terms Unm obtained from the spherical expansion
method (upper line) and Unm obtained from FFT method (below). Note that
(from Eq. (5.41)) Unm = Umn and the Unm = U∗

nm, i.e. Unm is real. All
energies are in electron Volts.

In the preceeding section, it has already been shown that very good agreement of the two
methods is achieved. Again, we consider (5.43) with R = R′ = 0 for the Wannier function
from the Hartree calculation of copper in the central site; but now we will look at all the
direct inter-band terms, explicitly:24

Unm = W (0n0m,0m0n;0,0) (5.75)

The contribution of this energy to the total Coulomb energy strongly depends on the local-
ization of the Wannier functions. However, since all the Wannier functions under consider-
ation are well localized, the Unm may serve as a first estimate of direct inter-band Coulomb
matrix elements with maximally localized Wannier functions from a Hartree calculation.
These are shown in Tab. 5.2. Again, the energies are in excellent agreement for the two
methods.

24Above, we were only looking at U22.
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Figure 5.8: Screening of Coulomb interaction U22 using the FFT method.

Yukawa Potential

As an example of the effect of screening, we have, for the U22 Coulomb matrix element,
included screening by using the Yukawa potential and applying the FFT method using Eqs.
(5.67) and (5.68). The result of this calculation is shown in Fig. 5.8. Since the Wannier
function w2 is extremely well localized, the curve may be regarded as the total Yukawa
interaction energy. Clearly, for α → 0, the Yukawa matrix element approaches the value of
the Coulomb matrix element.25 For α→ ∞, we find the Yukawa energy approaching zero,
which is evident from the RHS of Eq. (5.67). Note that we have used a logarithmic axis α
to plot U22(α), which makes these two features, i.e. the limits α → 0 and α → ∞, more
visible to the eye. The overall shape of the curve is not very surprising: With increasing
screening, the matrix element becomes smaller. Some screened Coulomb matrix elements
for lithium have also been calculated in Ref. [56] using the FFT method.

5.3.5 Coulomb d-matrix

In our work, we are using a minimal basis of orthogonal localized Wannier functions for
expanding the field operators (5.2). These Wannier functions then appear in the matrix el-
ements Eq. (5.3). However, often other basis sets are being used. One could start from a
set of (overlapping) “quasi atomic” orbitals, i.e. a radial wave function times a spherical
harmonic, at each lattice site R. As a consequence, our basis would be characterized by
L = {`,m} and R which has certainly many advantages, but this characterization im-
plies that the basis is non-orthogonal, since the crystal lattice has no continuous rotation

25We actually obtain a slightly different value, since the divergence is treated differently using (5.68) and not
using (5.65). The later treatment is numerically more precise, however. Note that, from (5.67), we see that for
α = 0 (no screening) the Yukawa potential is the Coulomb potential.
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symmetry. However, the formalism of second quantization demands an orthogonal basis,
which may be obtained from the non-orthogonal basis via the so-called Löwdin transforma-
tion [57]. Here, the transformed basis functions are linear combinations of different quasi
atomic orbitals from different sites.26 These Löwdin orbitals are orthogonal, but no longer
characterized by L = {`,m} and less localized than the quasi atomic orbitals, they have
more similarity with localized Wannier orbitals.

Nevertheless, despite these complications, if we use atomic orbitals, the basis is character-
ized by L = {`,m} which allows us to completely isolate the (on-site) Coulomb interaction
among (pure) 3d-states. We write our (quasi) atomic d-wave function as:

ψm(r) = R`=2(r)Y
m
`=2(ϑ, ϕ) m = {−2,−1, 0,+1,+2} (5.76)

Hence, if we use Eqs. (5.49) to (5.52) and set `1 = . . . = `4 = 2, we obtain:27

Wm1...4 =
∑

k=0,2,4

Ckm1...4
F k (5.77)

This is the Coulomb d-matrix which contains interaction matrix elements between the var-
ious d-orbitals. The coefficients F k are the so-called Slater integrals [59] (sometimes also
called “Racca coefficients”) defined by:

F k ≡ e2
∫
dr r2

∫
dr′ r′2 |R`=2(r)|2

rk<

rk+1
>

|R`=2(r
′)|2 (5.78)

Note that only the three integrals F 0, F 2 and F 4 are required to determine all the Coulomb
d-matrix elements. We may exploit properties of the Coulomb d-matrix in terms of F k by
examining the coefficients Ck

m1...4
which are defined by Eq. (5.53). From (5.54), we realize

that the coefficients Ck
m1...4

vanish unless k = {0, 2, 4} which justifies the restriction of the
k-sum in (5.77) to these values. In the appendix C.7, we explicitly give the coefficients
Ckm1...4

. Table C.2 enables us to determine averaged Coulomb interactions (5.77) in terms
of Slater integrals F k. An averaged direct Coulomb interaction U and an averaged exchange
Coulomb interaction J may be defined as:28

U ≡ 1

25

∑

mm′

Wmm′m′m = F 0 (5.79)

J ≡ 1

20

∑

m6=m′

Wmm′mm′ =
2

35

(
F 2 +

10

9
· F 4

)
(5.80)

Often [11, 18, 60], one assumes F 4/F 2 = 0.625 which corresponds to the atomic ratio.
Thus, U and J determine the three Slater integrals and are usually treated as semiempiri-
cal parameters. For example, one chooses U and J in such a way that the spin magnetic

26See also the linear combinations of atomic orbitals (LCAO) method [58].
27Again, m1...4 is to mean m1m2m3m4, etc.
28Sometimes [18], a basis using cubic harmonics (which are linear combinations of spherical harmonics)

is preferred. Consequently, the Coulomb matrix elements are different and the following expressions change
slightly.
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moment (or other physical quantities that are available from experimental studies) are pre-
dicted correctly by some many-particle calculation. In addition to U and J , we can define
an averaged intra-orbital Hubbard-U as:

Udiag ≡ 1

5

∑

m

Wmmmm = F 0 +
2

35

(
F 2 +

5

9
· F 4

)
(5.81)

However, we are in a position to evaluate the Slater integrals numerically. The radial wave
functions appearing in (5.78) may be estimated by our radial functions φd(r) arising within
the LMTO method for the d-orbitals, which corresponds to choosing a wave function in the
center of the occupied part of the d-band (at the energy Eνd). Thus, the (3d) Slater integrals
are given via Eq. (5.57) as:

F k = bk22220000 = e2
∫
dr r2 φ2

νd(r)

∫
dr′ r′2 φ2

νd(r
′)

rk<

rk+1
>

(5.82)

In this sense, we could refer to our basic integrals bk`1...4p1...4
as “extended Slater integrals”.

Although we do not use the quasi atomic basis for our calculations, the Slater integrals pro-
vide a very useful estimate for the size of Coulomb matrix elements via Eqs. (5.79), (5.80)
and (5.81). In particular, no Wannier functions are needed for their determination. In fact,
not even Bloch states enter (5.82). For any (self-consistent) one-particle Hamiltonian, used
for constructing a basis, we can easily evaluate F k by: (i) Solving the radial Schrödinger
equation (3.10) for an energy E in the energy range we are interested in, i.e. usually a few
eV below the Fermi level, and ` = 2. (ii) Evaluating (5.78) with the obtained radial d-wave
function.



Chapter 6

Hartree-Fock Approximation

Using the techniques of the preceeding chapters, we are in a position to write down the
full “second-quantized” Hamiltonian (5.3) in Wannier representation with matrix elements
calculated from first principles. The full complexity of the many-body problem is included
in this Hamiltonian and because it is far too complicated to be treated in its full general-
ity, we apply the Hartree-Fock approximation which corresponds to treating the Coulomb
interaction to first order perturbation theory in U .

6.1 Preliminaries

We have already dealt with the Hartree approximation in chapter 2, which we can regard as
a special case of the local density approximation in which the (local) exchange-correlation
potential is omitted. As is well-known, in the Hartree approximation, the (many-particle)
wave function is just a simple product of one-particle wave functions which is not properly
antisymmetrized. In the Hartree-Fock approximation, the trial function is a Slater determi-
nant, accounting for the antisymmetry of the many-fermion wave function. Rayleigh-Ritz
minimization of the energy 〈H〉 in terms of the trial function yields the well-known Hartree-
Fock equations, see e.g. Ref. [51], which are Schrödinger equations, however, unlike the
Hartree or Kohn-Sham equation, with a non-local exchange term. Therefore, it is difficult to
solve the Hartree-Fock equations. In the formalism of second quantization, this non-locality
is not a problem, as we shall see.

Because the Hartree-Fock approximation lies in taking just a single Slater determinant for
the wave function of the interacting system, although this wave function is a linear combina-
tion of all possible N -particle Slater determinants that can be constructed from a complete
one-particle basis, the Hartree-Fock total energy 〈H〉 must be a strict upper bound to the
true total energy.

Let us write our Hamiltonian (5.3) as

H =
∑

12σ

(H0)12 a
†
1σa2σ +

1

2

∑

1234

∑

σσ′

W12,34 a
†
1σa

†
2σ′a3σ′a4σ . (6.1)
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Here and throughout this chapter, we use the abbreviated notation 1 to mean R1n1 and 2 to
mean R2n2, etc. , and a†1σ creates an electron in a Wannier state of spin σ and wave function
〈r|R1n1〉, etc. It turns out, see Ref. [44], that the Hartree-Fock approximation consists in
replacing the product of four particle annihilation and creation operators by:

〈a†2σ′a3σ′〉a†1σa4σ + 〈a†1σa4σ〉a†2σ′a3σ′ − 〈a†1σa3σ′〉a†2σ′a4σ − 〈a†2σ′a4σ〉a†1σa3σ′ (6.2)

Where the expectation values denote 〈Φ0| . . . |Φ0〉 , and |Φ0〉 is the ground state of the inter-
acting system.1 Inserting the Hartree-Fock approximation (6.2) into (6.1) yields an effective
non-interacting Hamiltonian. After renumbering the indices and using W12,34 = W21,43 ,
we find:

Heff =
∑

12σ

[
(H0)12 + ΣHF

12,σ

]
︸ ︷︷ ︸

Xσ
12

a†1σa2σ =
∑

12σ

Xσ
12 a

†
1σa2σ (6.3)

where ΣHF is the Hartree-Fock contribution to the self-energy:

ΣHF
12,σ =

∑

34σ′

[
W13,42 − δσσ′W31,42

]
〈a†3σ′a4σ′〉 = ΣHart

12 + ΣFock
12,σ (6.4)

Note that the effective hopping matrix elements Xσ
12 in (6.3) depend on the term 〈a†3a4〉, i.e.

the expectation value of an annihilation and a creation operator within the ground state of
Heff , hence, Eq. (6.3) defines a self-consistency problem which can be solved by iteration.
The Hartree-Fock self-energy consists of two terms the Hartree (or direct) and the Fock (or
exchange) term. The Hartree term

ΣHart
12 =

∑

34

W13,42

∑

σ′

〈a†3σ′a4σ′〉 (6.5)

is independent of spin.2 Hence, just as within a spin-polarized Hartree (DFT-LSDA) calcu-
lation (Sec. 2.5), no spin magnetic moment can develop. The Fock term

ΣFock
12,σ = −

∑

34

W31,42〈a†3σa4σ〉 (6.6)

is responsible for the spin-dependency of the Hartree-Fock self-energy. It accounts for
Pauli’s exclusion principle, i.e. the fact that electrons with same spin tend to stay apart,
as well as for the self-interactions included in the Hartree term, see section 6.3.3.

6.2 Computational Techniques

Equation (6.3) defines the problem we wish to solve. However, a few tools need to be
developed to solve this problem.

1See Ref. [44].
2Unless self-interactions are not included, see section 6.3.3.
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6.2.1 Occupation Matrix

The occupation matrix, or density matrix, for the (effective many-particle) ground state |Φ0〉
of Heff is defined by:

Aσ12 ≡ 〈a†1σa2σ〉 = 〈Φ0|a†1σa2σ|Φ0〉 (6.7)

Let us suppose the effective matrix elements Xσ
12 are known. The ground state |Φ0〉 is (most

easily) given by the (antisymmetrized) product of the one-particle states |ψnkσ〉 whose
eigenenergies are below the Fermi energy. Using Xσ

12 in Eq. (5.32) for each spin direc-
tion, we obtain the band structure via Eq. (5.33). By applying the tetrahedron method, we
are in a position to obtain the Fermi level EF using (3.40) and the procedure described in
section 3.4. Using the operators c†nkσ and cnkσ introduced in Eq. (5.8), the expectation value
in the ground state is expressed as

〈c†nkσcn′k′σ′〉 = δnn′δkk′δσσ′Θ(EF −Eσn(k)) , (6.8)

where Θ is the step function defined in Eq. (B.9). This expectation value vanishes unless the
state created and the state annihilated are equal and the eigenenergy Eσ

n(k) of this state is
below the Fermi energy EF , since if we remove a state |ψn′k′σ′〉 from the ground state, we
can only come back to the ground state by adding the same state |ψnkσ〉 (when this state is
occupied, i.e. its eigenenergy is below the Fermi level). The relation between our Bloch and
Wannier states is given by (4.1) with the Bloch states transformed by unitary matrices U k

mn

which are obtained upon diagonalization of (5.32), i.e. the unitary matrices appearing in
(5.33). It follows that the relation between our Bloch and Wannier creation and annihilation
operators are:

a†Rnσ =
1

N

∑

km

e−ikRUk
mnc

†
mkσ , aRnσ =

1

N

∑

km

eikRUk∗
mncmkσ (6.9)

Inserting (6.9) into Eq. (6.7) and using (6.8) yields:

Aσ12 =
1

N

∑

k

e−ik(R1−R2)
∑

m

Uk
mn1

Uk∗
mn2

Θ(EF −Eσm(k)) (6.10)

As one would anticipate, the expectation values only depend on the difference of R1 and
R2. Therefore, we cast Aσ12 into a form like (5.12) and define

AσRn1n2
≡ 1

N

∑

k

e−ikR
∑

m

Uk
mn1

Uk∗
mn2

Θ(EF −Eσm(k)) , (6.11)

such that

Aσ12 = Aσ(R1−R2)n1n2
. (6.12)

The occupation matrix is closely related to the charge density. The spin density operator is
given by:

n̂σ(r) = Φ†
σ(r)Φσ(r) (6.13)
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We can think of this operator as examining the spin density by trying to remove a particle
at position r with spin σ and putting it back. Hence, 〈Φ0|n̂σ(r)|Φ0〉 is the ground state spin
density. Using (5.10) and taking the expectation value of (6.13) yields the spin density for
the ground state in terms of Wannier functions:3

nσ(r) = 〈Φ0|n̂σ(r)|Φ0〉 =
∑

12

w∗
1(r) w2(r) 〈a†1σa2σ〉 (6.14)

Note that the Wannier functions are independent of spin. Let us examine the (spin) density
inside the central muffin-tin. Using Eqs. (4.4) and (4.6), we find:4

nσ(r) =
∑

12

w∗
n1

(R −R1; r) wn2(R −R2; r) A
σ
(R1−R2)n1n2

∀ R (6.15)

Since the lattice sums include all sites, we have added a vector R to R1 and R2 mak-
ing nσ(r) the density inside any muffin-tin.5 This should also turn out this way, since
nσ(r) = nσ(r + R). Equation (6.15) turns out to be very useful for numerical tests, al-
lowing us to check the correctness of the occupation matrix by evaluating the RHS using
the Wannier functions and evaluating the LHS using the moment expansion of the density
(see section 3.3.4).

6.2.2 Self-energy

Being able to evaluate the occupation matrix, we now focus on the Hartree-Fock contribu-
tion to the self-energy (6.4):

ΣHF
12,σ =

∑

34σ′

[
W13,42 − δσσ′W31,42

]
Aσ

′

34 (6.16)

Using Eqs. (5.40) and (6.12) yields:

ΣHF
12,σ =

∑

34σ′

[
WR1−R2;R3−R2;R4−R2
n1n3,n4n2

− δσσ′W
R3−R2;R1−R2;R4−R2
n3n1,n4n2

]
Aσ

′

(R3−R4)n3n4

At this point it is not obvious that X12 only depends on the difference of the sites R1 and
R2. The multiple sum involves a sum R3 and a sum R4 over all sites. We can replace
R3 → R3 +R2 and R4 → R4 +R2 since these sums include all sites anyway. After these
substitutions, one finds:

ΣHF
12,σ =

∑

34σ′

[
WR1−R2;R3;R4
n1n3,n4n2

− δσσ′W
R3;R1−R2;R4
n3n1,n4n2

]
Aσ

′

(R3−R4)n3n4

As desired, only terms R1−R2 appear. Hence, the Hartree-Fock self-energy can be written
in the form (5.12). To summerize these results, we write:

ΣHF
Rn1n2,σ =

∑

34σ′

[
WR;R3;R4
n1n3,n4n2

− δσσ′W
R3;R;R4
n3n1,n4n2

]
Aσ

′

(R3−R4)n3n4
(6.17)

3Note that Φ0 denotes the many-particle ground state while Φ†
σ(r) and Φσ(r) are field operators.

4Since wRn(r) = wn(−R; r) if |r| < S.
5Leaving the term Aσ

(R1−R2)n1n2
unaffected.
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6.2.3 Self Consistency

As mentioned above, Eq. (6.3) defines a self-consistency problem which we solve by itera-
tion. In essence, the self-consistency cycle equals the one introduced in section 2.2, now in
the language of second quantization. The self-consistency cycle is organized as follows:

1. Make an initial guess for Xσ
12, e.g. Xσ

12 = (H0)12 .

2. Evaluate the occupation matrix Aσ12 .

3. Recalculate X̃σ
12 = (H0)12 + ΣHF

12,σ using Eq. (6.17).

4. Compare the new X̃σ
12 with the old Xσ

12. If some criterion for convergence is satisfied,
exit the cycle.

5. Set Xσ
12 to αX̃σ

12 + (1 − α)Xσ
12 and go back to step 2.

6.2.4 Total Energy

Although not necessary for evaluating the effective Hamiltonian (6.3), the total energy is an
important quantity which we can calculate. Assuming the effective Hamiltonian (6.3) has
been evaluated, i.e. the effective hopping matrix elements Xσ

12 have been determined, we
are now in a position to calculate the total energy of the valence electrons which is given by
the expectation value of the Hamiltonian (6.1):

〈H〉 =
∑

12

(H0)12
∑

σ

〈a†1σa2σ〉 +
1

2

∑

1234

W12,34

∑

σσ′

〈a†1σa
†
2σ′a3σ′a4σ〉 (6.18)

From Wick’s theorem6, which can be applied since the Hartree-Fock ground state is a Slater
determinant, it follows that the second expectation value is given by:

〈a†1σa
†
2σ′a3σ′a4σ〉 = 〈a†1σa4σ〉〈a†2σ′a3σ′〉 − 〈a†1σa3σ′〉〈a†2σ′a4σ〉 (6.19)

Inserting (6.19) into (6.18) yields (after renumbering some of the quantum numbers):

〈H〉 =
∑

12σ

[
(H0)12 + 1

2ΣHart
12 + 1

2ΣFock
12,σ

]
Aσ12 (6.20)

The first energy term, i.e.
∑

12σ(H0)12A
σ
12, is the sum of non-interacting one-particle ener-

gies. The second energy term is the direct energy, it represents the direct average interaction
among electrons. The last energy term is the exchange energy. This is a correction to the
direct energy due to antisymmetry (i.e. exchange symmetry) of the many-fermion wave
function. The negative sign appearing in Eq. (6.6) is responsible for this correction lower-
ing the total energy. Physically, this can be understood as follows.7 The short-range part of
the Coulomb potential in the direct energy over-counts the interaction energy, since the elec-
trons with same spin tend to stay apart. This over-counting is subtracted by the exchange
energy.

6See e.g. Ref. [44].
7See also [51].
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Note that the factors 1
2 in the direct and exchange energy do not appear in

〈Heff〉 =
∑

12σ

[
(H0)12 + ΣHF

12,σ

]
Aσ12 =

∑

12σ

Xσ
12A

σ
12 . (6.21)

Here, we would mistakenly double count the interaction energies.

A form for computational evaluation of the total energy per atom is:

〈H〉 =
∑

Rnmσ

[
(H0)Rnm + 1

2ΣHF
Rnm,σ

]
AσRnm (6.22)

6.3 Hartree Calculation

We have now developed all the tools to perform a many-particle calculation within the
formalism of second quantization using first principle matrix elements. We choose this cal-
culation to be as simple as possible, since we don’t know what kind of surprises may be
waiting for us.

We are in a position to compare the results of a “first-quantized” Hartree calculation, i.e.
within LDA omitting the exchange-correlation potential, to a “second-quantized” Hartree
calculation. Using (6.5), our problem is to find the solution of

Heff =
∑

12

X12

∑

σ

a†1σa2σ where X12 = (H0)12 + ΣHart
12 . (6.23)

Usually, one would have to solve this equation self-consistently, as described above, how-
ever, since we can evaluate the Hartree Hamiltonian HHart from LDA, the ground state
is already known.8 Thus, the occupation matrix, ΣHart

12 , and hence the matrix X12, can be
evaluated. The resulting X12 may then be compared to the matrix elements (HHart)12. The
main purpose for this calculation is to gain some experience needed for the Hartree-Fock
calculation.

6.3.1 Basis

The question arises which basis we should use for this approach, see also appendix C.8.
As mentioned earlier, any basis is equally good, as long as it is complete, however, since
we use a minimal basis9, the choice of the one particle basis is important. Since the re-
sult from this calculation is the Hartree Hamiltonian, one should use the Hartree basis. By
Hartree basis we mean a minimal basis of Wannier functions constructed from HHart. On
the other hand, one might argue that the matrix elements (H0)12 enter the effective hopping
matrix elements X12 too, and that the Hartree basis is not very good for describing the non-
interacting Hamiltonian H0.10 This suggests the use of H0 as the starting point to construct

8In fact, calculating HHart in first quantization (DFT-LDA omitting XC) actually involves a self-consistent
calculation too.

9Consisting only of Wannier orbitals with (4)s, (4)p and (3)d character.
10See e.g. Fig. 7.3.
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the basis set. However, (H0)12 is only one term in X12 and the Hartree basis is designed
to describe the full Hartree Hamiltonian, i.e. H0 plus the Hartree self-energy ΣHart. Thus,
it is not surprising that the Hartree basis cannot describe the band structure of H0 itself.
Accordingly, we use the Hartree basis for this approach.

6.3.2 Analogy: First and Second Quantization

Just as a check, let us calculate the Hartree self-energy (6.5) and see if these matrix elements
are equal to the matrix elements of the potential caused by the classical Hartree interaction,
i.e. the Hartree term in (2.15). Using Eqs. (5.38) and (6.5) gives

ΣHart
12 =

∫
d3r w∗

1(r) w2(r)

∫
d3r′

e2

|r− r′|
∑

σ′

∑

34

w∗
3(r

′) w4(r
′) 〈a†3a4〉

︸ ︷︷ ︸
nσ′(r′)

, (6.24)

where we used (6.14). Since the total charge density n(r) is just the sum of the spin-up and
the spin-down density, see Eq. (2.40), we find

ΣHart
12 =

∫
d3r w∗

1(r) w2(r)

∫
d3r′

e2n(r′)

|r − r′| =
〈
1
∣∣∣
∫
d3r′

e2n(r′)

|r − r′|
∣∣∣2
〉
, (6.25)

as we wished to proof. This little calculation was kept general, the ASA form of the Wan-
nier function (4.6) was not taken into account. We will now look at this calculation again
(using (4.6)), and, as we shall shortly see, the evaluation of our Coulomb matrix elements
(5.42) needs to be modified in order for our (second quantization) Hartree calculation to be
consistent with the first quantization Hartree calculation.

Using Eqs. (5.42), (5.43) and (6.15), we can write ΣHart
12 as:

∑

R

∫
d3r w∗

n1
(R −R1; r) wn2(R −R2; r)

∑

R′

∫
d3r′

e2 n(r′)

|r − r′ + R −R′| (6.26)

But from (5.17), the matrix elements of the Hartree term are given by:

∑

R

∫
d3r w∗

n1
(R −R1; r) wn2(R −R2; r)

∫
d3r′

e2 n(r′)

|r− r′| (6.27)

Now in order that (6.26) equals (6.27), i.e.

∑

34

〈
1
∣∣∣
〈
3
∣∣∣

e2

|r− r′|
∣∣∣4
〉∣∣∣2
〉∑

σ′

Aσ
′

34 =
〈
1
∣∣∣
∫
d3r′

e2n(r′)

|r − r′|
∣∣∣2
〉
, (6.28)

we have to restrict the R′-sum in (6.26) to R, such that the denominator reduces to |r− r′|
as in (6.27). This corresponds to modifying Eq. (5.42) to

W12,34 =
∑

R

W (12, 34;R,R) . (6.29)
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However, Eq. (5.42) is not wrong, it follows from the ASA form of the Wannier func-
tions. So how is it possible that we need to modify our old atomic sphere expansion of the
Coulomb interaction in order to achieve the desired agreement (6.28)? To answer this ques-
tion, we need to understand why it is sufficient to restrict the evaluation of the Hartree term
in (6.27) to a single muffin-tin sphere which is done in our Hartree and DFT calculations.
Since there are as many electrons as protons in one atom of the solid, the total charge in-
side the unit cell equals zero. Hence, electrons do (approximately) not feel a Coulomb force
from the neighbor atoms.11 Accordingly, the potential from the nuclear point charge and the
electronic charge density can be restricted to a single muffin-tin. If we were to include the
potential from neighboring valence electrons,12 we would also have to include the potential
from neighboring ion charge densities. This seems, however, to be a difficult task, since the
atomic spheres are overlapping. Thus, we neglect terms R 6= R′ in Eq. (5.42) altogether in
order to be consistent with our previous calculations.

6.3.3 Self-interaction

In density functional theory, one always assumes that all the electrons move in the same
effective potential constructed from the total charge density. However, in the real world, an
electron does not interact with itself. Therefore, to be correct, we would have to construct
the potential for an electron from all the other states, i.e. excluding the charge density from
the state of the electron we consider. Consequently, a different one-particle potential for all
the electrons would be required, and DFT would become much more complicated. One may
also argue that, since we usually have many electrons in the system, the effect of this extra
electron is small.

As mentioned earlier, the Fock term accounts for the self-interactions included in the Hartree
term, as can be understood as follows. From Pauli’s exclusion principle it follows that
a†1σa

†
2σ′ and a3σ′a4σ are zero13 when 1σ = 2σ′ or 3σ′ = 4σ respectively, since two fermions

cannot be created (annihilated) in the same one-particle state. For this condition, the inter-
action term in (6.1) should vanish. By means of (6.2), we realize that this is (indeed) the
case, since if 1σ = 2σ′ , the first and third term and the second and last term cancel; and if
3σ′ = 4σ , the first and last term and the second and third term cancel.

In the Hartree approximation, this cancellation does not occur. By explicitly inserting the
term14 (1− δ13δσσ′ ) · (1− δ24δσσ′ ) in Eq. (6.5), self-interactions are not included anymore.
The first thing we realize is that this has the consequence that the Hartree self-energy (6.5)
becomes spin-dependent.15 Nevertheless, since we include self-interactions in DFT-LDA,
we also include them in the second quantized version of the Hartree equations, i.e. we do
not explicitly insert the above term.

11Nevertheless, hopping enters the total energy of the solid, which assumes its minimum for the ground state,
allowing for crystal binding.

12As we would by using (6.26).
13The zero operator, to be more correct.
14The indices have changed a little, since we did some renumbering of the indices when going from (6.1) and

(6.2) to (6.3).
15Since we cannot write the σ′-sum right in front of the occupation matrix.
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Figure 6.1: Total (both spin) density of states from Hartree calculation.

6.3.4 Example Iron

Let us compare the Hartree band structures obtained from a first quantization and a second
quantization calculation. Taking (6.29) into account, there is no difference between the two,
i.e. Eq. (6.28) holds (when self-interactions are included). Numerically, however, we can
only take a finite number of Coulomb matrix elements appearing in the LHS of Eq. (6.28)
into account; while on the RHS of (6.28), the electronic density appears explicitly, avoiding
this problem. Hence, following the procedure outlined below Eq. (6.23), we can estimate the
error involved by only using nearest-neighbor Coulomb matrix elements. By using a mini-
mal basis, we have already restricted ourselves to nine band indices, but we still have to deal
with site indices. Using (5.40), only three site indices are appearing in (6.17). Nevertheless,
if we only consider nearest-neighbor site indices, the number of Coulomb matrix elements
appearing in (6.17) is 93 · 94 = 4, 782, 969 for BCC and even 133 · 94 = 14, 414, 517
for FCC. By a glance at the table in appendix C.6, it becomes obvious that we have to re-
strict the site indices somehow. We restrict ourselves to nearest-neighbor Coulomb matrix
elements. By next neighbor matrix elements, we mean a matrix element in which the four
site indices are (pairwise) maximally a next neighbor distance apart.16 Since (5.40), we can
consider R4 = 0. In the case of FCC there are 421 · 94 = 2, 762, 181 such matrix elements.
Using symmetry (5.41), we still need to evaluate 691, 335 matrix elements. Each of those is
evaluated by including second nearest-neighbor sites in (6.29).

Having the above in mind, it is not surprising that we do not achieve complete agreement in
Fig. 6.1 where a comparison of the first and second quantized Hartree calculation for iron
is plotted.17

16It also follows that the resulting XRnm are only evaluated up to nearest-neighbor R.
17The DOS from the first quantized calculation, i.e. DFT without XC, is also shown in Fig. 7.1.
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6.4 Hartree-Fock Calculation

Having discussed the Hartree calculation in such detail, there is not a whole lot more to say
about the Hartree-Fock calculation. The only difference is the exchange term in Eq. (6.17).

As described in section C.8, we use the Hartree basis for the Hartree-Fock calculation.

Since (6.4) consists of two terms, one may be tempted to start from a (first quantization)
Hartree calculation and treat the Fock term “on top”, such that the effective hopping matrix
elements take the form

Xσ
12 = (H0)12 +

〈
1
∣∣∣
∫
d3r′

e2n(r′)

|r − r′|
∣∣∣2
〉

+ ΣFock
12,σ = (HHart)12 + ΣFock

12,σ , (6.30)

where we used (6.28). However, the Hartree self-energy depends on the effective ground
state of Heff and this is not taken into account by (6.30), since (HHart)12 is evaluated for
the ground state of the Hartree but not the effective Hartree-Fock Hamiltonian Heff . In
other words, using (6.30), we would not consider that the occupation matrix, and hence the
Hartree self-energy in (6.4), depends on the Hartree-Fock ground state Heff . Thus, we do
not use (6.30), but rather (6.4), in connection with (6.3) within the self-consistency cycle as
described in Sec. 6.2.3.

Example (cont.)

We will now continue our example from Sec. 6.3.4, and look at the Hartree-Fock calculation
for iron.

In the Hartree calculation, we had to include self-interactions, i.e. not explicitly insert
(1 − δ13δσσ′) · (1 − δ24δσσ′ ) in the Hartree self-energy, in order to be consistent with DFT.
Now, however, the Fock self-energy cancels the self-interactions included in the Hartree
term. This suggests to use the self-energy

ΣHF
12,σ =

∑

34

W13,42

∑

σ′

Aσ
′

34 −
∑

34

(1 − δ13δσσ′)(1 − δ24δσσ′)W31,42A
σ
34 , (6.31)

that is, not to allow the Fock self-energy to cancel the Hartree self-interactions by deliberately
excluding the cancellation. The upper plot in Fig. (6.2) shows the band structure, found
self-consistently by using (6.31), instead of the correct Hartree-Fock term (6.4). But the
spin moment was found to be 0.82 µB /atom which is much smaller than the experimental
value of 2.22 µB/atom. Using the correct Hartree-Fock term (6.4), we find the band struc-
ture shown in the lower plot. Here, the spin moment is 2.90 µB /atom which is too large,
but this is reasonable since Hartree-Fock overestimates spin moments (see discussion, Sec.
7.2). Now, however, the lack of self-interactions causes the d-bands to be too low in energy.
We believe that one should use the correct Hartree-Fock self-energy, in particular since the
total energy is lower. After all, Hartree-Fock is just first order perturbation theory in U , and
the band structure can not be regarded as the final answer.
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Figure 6.2: Spin-polarized Hartree-Fock band structure relative to Fermi en-
ergy [Majority spin (solid), minority spin (dashed)]. In the upper plot Eq.
(6.31) was used and the spin moment was found to be 0.82 µB/atom and total
energy 〈H〉 = −45.4 Ryd/atom, while in the lower plot we used (6.4) and
found 2.90 µB/atom and −49.4 Ryd/atom.



Chapter 7

Results

In this chapter, we present results for the 3d transition metals Fe, Co, Ni and Cu, which fol-
low from applying the methods and techniques described in the preceeding chapters. A few
of the following results have already appeared in some of the illustrations and examples.
We wish, however, to present the collected results for these metals in a standardized form.
This chapter is organized as follows: After some general remarks about the actual calcula-
tions and the standardized form, we give the explicit data for the 3d transition metals. To
discuss the results, we perform some additional calculations for these systems and examine
the trends in several of the calculated quantities with respect to the atomic number.

7.1 Calculations

To begin with, for each metal, a self-consistent Hartree, an LDA and an LSDA calcula-
tion (chapter 2) at experimental equilibrium volume was performed. The one-electron band
problem was solved using the LMTO method (chapter 3). From the Hartree calculation
(which we perform using spd-orbitals), we obtain maximally localized Wannier functions
using the Marzari-Vanderbilt method (Sec. 4.2). Here, we use the composite treatment of
the energy bands (Sec. 4.3). From these maximally localized Wannier functions, serving as
a minimal basis for our many-particle problem, the Wannier function projected DOS was
evaluated in order to estimate their localization with respect to energy. Having established
our basis set, we have determined various matrix elements, as described in chapter 5:

i.) The matrix elements for the Hartree Hamiltonian itself which allows re-evaluation of
the Hartree band structure. This is an important numerical test. For all four metals,
excellent agreement was achieved, as shown for copper in Fig. 5.3.

ii.) The matrix elements for the LSDA Hamiltonian, in order to see whether the (spin-
independent) basis is coping with spin-polarized Hamiltonians with non-vanishing
magnetic moment arising from exchange and correlation. For all four metals, good
agreement was achieved, as already shown for iron in Fig. 5.5.

iii.) The matrix elements for the Hamiltonian which contains only the core potential, as
given in Eq. (3.48).
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104 7. Results

iv.) The Coulomb matrix elements using the spherical expansion method (Sec. 5.3.1), pro-
ceeding as described in Sec. 6.3.4.

Using the matrix elements evaluated in points iii.) and iv.), we perform a Hartree-Fock
calculation (chapter 6). Four pages have been devoted to each metal.

Page 1: The first four parameters are input parameters for the calculation, but all other
parameters, except, of course, experimental spin magnetic moment, are computa-
tional results. Shown is the

1.) atomic number Z .

2.) number of valence electrons.

3.) assumed crystal lattice (either FCC or BCC).

4.) assumed experimental equilibrium volume (from Ref. [31]).

5.) total energy (of the valence electrons per atom in Rydbergs) resulting from the
self-consistent Hartree calculation (chapter 2).

6.) LDA total energy.

7.) LSDA total energy.

8.) Hartree-Fock total energy, i.e. Eq. (6.22).

9.) Slater integral F 0 (see Eq. (5.82)), in electron Volts, where the radial wave
function was obtained from the Hartree calculation.

10.) averaged direct Coulomb interaction U , defined by the middle term in Eq.
(5.79).

11.) estimate for the Hubbard-U from constrained LDA, as already shown in Tab.
2.2 in Sec. 2.4.

12.) experimental spin magnetic moment, in units µB/atom, from Ref. [46].

13.) LSDA magnetic moment obtained from Eq. (2.45).

14.) magnetic moment obtained from Hartree-Fock (see chapter 6).

Also on the first page is a figure showing the density of states (both spins), relative
to the Fermi energy, in units 1/eV, from the Hartree calculation (chapter 2).

Page 2: The upper table on the second page contains some properties of the maximally lo-
calized Wannier functions which have been calculated from the Hartree calculation
using the method by Marzari and Vanderbilt (Sec. 4.2). Each row shows a property
for the nine Wannier functions. The properties are discussed and illustrated in Sec.
(4.3). Shown is (in the rows) the

1.) total portion of the nth Wannier function in its “home” sphere, i.e. Eq. (4.32)
with R = 0.

2.) total s-character of the nth Wannier function. By total we mean the total spatial
extent of the function from all MT spheres, as in the last column of Tab. 4.1.

3.) total p-character.
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4.) total d-character.

5.) central energy En associated with the nth Wannier function (according to Eq.
(4.45)) relative to the Fermi energy.

6.) measure of the energetic width of the nth Wannier function in terms of energy
given by Eq. (4.46).

7.) portion of the density of states of the nth Wannier function at the Fermi level,
i.e. Nj(EF )/N(EF ) (in percent), see also Eq. (4.36).

8.) projected NOS at the Fermi level nn(EF ). The values account for both spins,
such that 0 ≤ nj(EF ) ≤ 2.

The two lower tables show (on-site) direct and exchange Coulomb matrix elements
for the Wannier functions mentioned above. By means of Eq. (5.40), these are
defined as:

Unm = W 000
nm,mn and Jnm = W 000

nm,nm

Note that from (5.41) it follows that Unm = Umn, Jnm = Jmn and Unm = U∗
nm,

Jnm = J∗
nm. That is, the matrices U and J are symmetric and their elements

are real. Generally, however, Coulomb matrix elements are complex. The matrix
elements were evaluated using the spherical expansion method (Sec. 5.3.1), pro-
ceeding as described in Sec. 6.3.4. Hence, not only the contribution of the “home”
sphere, but also next neighbor portions of the Wanner functions are taken into ac-
count by equation (6.29).1

Page 3: The upper figure shows the density of states for spin-polarized DFT, i.e. for the
LSDA calculation. While Figs. 7.2, 7.7 and 7.12 show the DOS for the majority
and minority spin, Fig. 7.17 shows the total DOS, since the LSDA yields the same
energy bands for both spin directions for copper.

The lower figure on the 3rd page shows two graphs. In the lower graph, the density
of states of the non-interacting (one-particle) Hamiltonian H0 = −∇ + v0(r),
where v0(r) is the “core potential” (3.48), is shown. Since hybridization among
the `-characters of the (unoccupied) bands is almost negligible, the three bands
shown are almost pure and we have labeled them by their `-character. The d-bands
are extremely narrow. Hence, the DOS has a sharp peak, up to a few thousand
states per eV, indicated by the vertical line.
Above, we have plotted the DOS obtained by the matrix elements of H0 within the
Hartree basis (x = 1), see Sec. 5.2.3 example 3, for 9 shells included in the R-sum
in (5.32). In this sense, the lower graph shows the DOS in the eigenbasis.

Page 4: On the last page, we give our Hartree-Fock results (chapter 6).

The upper figure shows the band structure for majority and minority spin, obtained
from the effective hopping matrix elements X↑

12 and X↓
12, within the Hartree basis.

Below, the spin-resolved density of states is shown.

1This explains why direct matrix elements for copper (Tab. 7.8) are slightly larger than the values shown in
table 5.2.



106 7. Results

7.1.1 Iron

Atomic Number 26

Valence electrons 8

Lattice BCC

Wigner-Seitz radius [a0] 2.662

(Valence) Total energy: Hartree -43.128

[Ryd/atom] LDA -44.867

LSDA -44.894

Hartree-Fock -49.373

Coulomb energy U 3d: Slater F 0 21.62

[eV] Matrix elements 21.09

Constrained LDA 11.7

Magnetic moment: Experimental 2.22

[µB /atom] LSDA 2.18

Hartree-Fock 2.90

Energy relative to Fermi energy [eV]
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Figure 7.1: Total (both spins) density of states obtained from the “first quanti-
zation” Hartree calculation.
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n 0 1 2 3 4 5 6 7 8
∑

`C
0n
` .9761 .9765 .9596 .9800 .9773 .8754 .8731 .8763 .8776

∑
RC

Rn
`=0 .0019 .0018 .0081 .0019 .0017 .2224 .2381 .2265 .2168

∑
RC

Rn
`=1 .0955 .0726 .1797 .0611 .0728 .5480 .5509 .5347 .5417

∑
RC

Rn
`=2 .9026 .9256 .8121 .9370 .9255 .2295 .2110 .2388 .2415

En [eV] -1.39 -1.79 0.49 -2.08 -1.81 10.05 10.27 9.75 9.93

σn [eV] 7.25 6.68 9.49 6.14 6.63 12.77 12.76 12.73 12.83

% DOS 10.2 10.0 10.8 10.5 10.1 12.0 12.2 12.3 11.9

nn(EF ) 1.73 1.74 1.54 1.77 1.74 0.62 0.60 0.63 0.64

Table 7.1: Some properties of the nine maximally localized Wannier functions.

Unm 0 1 2 3 4 5 6 7 8

0 22.42 20.90 20.10 20.96 20.86 14.16 13.32 13.96 13.50

1 20.90 23.04 19.95 21.55 21.53 14.07 13.54 13.58 14.15

2 20.10 19.95 20.77 20.05 19.83 12.95 13.46 13.37 13.22

3 20.96 21.55 20.05 23.27 21.67 13.46 14.05 13.98 13.98

4 20.86 21.53 19.83 21.67 22.99 13.71 13.28 14.25 14.12

5 14.16 14.07 12.95 13.46 13.71 13.67 9.45 9.58 9.64

6 13.32 13.54 13.46 14.05 13.28 9.45 13.52 9.27 9.50

7 13.96 13.58 13.37 13.98 14.25 9.58 9.27 13.75 9.65

8 13.50 14.15 13.22 13.98 14.12 9.64 9.50 9.65 13.81

Jnm 0 1 2 3 4 5 6 7 8

0 22.42 0.84 0.61 0.75 0.99 0.86 0.73 0.81 0.42

1 0.84 23.04 0.77 0.88 0.84 0.70 0.51 0.48 0.86

2 0.61 0.77 20.77 0.88 0.70 0.96 0.93 0.92 0.60

3 0.75 0.88 0.88 23.27 0.82 0.33 0.78 0.64 0.69

4 0.99 0.84 0.70 0.82 22.99 0.52 0.46 0.75 0.83

5 0.86 0.70 0.96 0.33 0.52 13.67 0.58 0.56 0.57

6 0.73 0.51 0.93 0.78 0.46 0.58 13.52 0.45 0.56

7 0.81 0.48 0.92 0.64 0.75 0.56 0.45 13.75 0.55

8 0.42 0.86 0.60 0.69 0.83 0.57 0.56 0.55 13.81

Table 7.2: Direct and exchange Coulomb matrix elements for Wannier func-
tions. All energies are eV’s.

Iron
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Energy relative to Fermi energy [eV]
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Figure 7.2: Density of states (per spin) from LSDA.
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Figure 7.3: Total (both spin) density of states for the non-interacting Hamilto-
nian H0 in (i) eigenbasis (lower graph). (ii) “Hartree” basis (upper graph).
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Figure 7.4: Spin-polarized Hartree-Fock band structure relative to Fermi en-
ergy. [Majority spin (solid), minority spin (dashed)]
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Figure 7.5: Density of states (per spin) for Hartree-Fock band structure.
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7.1.2 Cobalt

Atomic Number 27

Valence electrons 9

Lattice FCC

Wigner-Seitz radius [a0] 2.621

(Valence) Total energy: Hartree -58.798

[Ryd/atom] LDA -60.965

LSDA -60.975

Hartree-Fock -66.354

Coulomb energy U 3d: Slater F 0 23.18

[eV] Matrix elements 22.59

Constrained LDA 12.2

Magnetic moment: Experimental 1.72

[µB /atom] LSDA 1.58

Hartree-Fock 1.90
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Figure 7.6: Total (both spins) density of states obtained from the “first quanti-
zation” Hartree calculation.
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n 0 1 2 3 4 5 6 7 8
∑

`C
0n
` .9806 .9598 .9810 .9893 .9835 .8722 .8802 .8713 .8832

∑
RC

Rn
`=0 .0053 .0120 .0018 .0008 .0031 .2442 .1836 .2699 .1892

∑
RC

Rn
`=1 .0696 .1973 .0643 .0153 .0400 .5782 .5808 .5609 .5551

∑
RC

Rn
`=2 .9250 .7907 .9338 .9839 .9568 .1776 .2357 .1691 .2557

En [eV] -1.72 1.04 -1.84 -2.89 -2.32 10.81 10.50 10.96 9.99

σn [eV] 6.45 9.68 6.23 3.84 5.26 12.22 12.34 12.15 12.38

% DOS 9.6 10.5 9.7 9.4 10.0 13.3 12.5 12.6 12.5

nn(EF ) 1.77 1.50 1.77 1.88 1.80 0.54 0.59 0.52 0.64

Table 7.3: Some properties of the nine maximally localized Wannier functions.

Unm 0 1 2 3 4 5 6 7 8

0 23.96 20.79 22.88 22.90 22.78 13.85 14.15 13.71 14.36

1 20.79 21.32 20.99 21.32 21.07 13.19 13.63 12.81 13.49

2 22.88 20.99 24.41 23.00 22.55 13.41 14.49 13.62 14.75

3 22.90 21.32 23.00 25.64 24.01 13.74 14.66 14.08 14.77

4 22.78 21.07 22.55 24.01 24.89 13.92 14.15 13.85 14.77

5 13.85 13.19 13.41 13.74 13.92 13.30 9.72 8.90 9.85

6 14.15 13.63 14.49 14.66 14.15 9.72 13.88 9.47 10.20

7 13.71 12.81 13.62 14.08 13.85 8.90 9.47 13.33 9.62

8 14.36 13.49 14.75 14.77 14.77 9.85 10.20 9.62 14.16

Jnm 0 1 2 3 4 5 6 7 8

0 23.96 0.93 0.67 1.04 0.98 0.86 0.53 0.69 0.59

1 0.93 21.32 0.66 0.79 0.84 0.82 0.89 0.67 1.09

2 0.67 0.66 24.41 1.02 1.11 0.43 0.87 0.59 0.66

3 1.04 0.79 1.02 25.64 0.66 0.44 0.53 0.67 0.47

4 0.98 0.84 1.11 0.66 24.89 0.60 0.49 0.67 0.58

5 0.86 0.82 0.43 0.44 0.60 13.30 0.72 0.56 0.72

6 0.53 0.89 0.87 0.53 0.49 0.72 13.88 0.61 0.69

7 0.69 0.67 0.59 0.67 0.67 0.56 0.61 13.33 0.61

8 0.59 1.09 0.66 0.47 0.58 0.72 0.69 0.61 14.16

Table 7.4: Direct and exchange Coulomb matrix elements for Wannier func-
tions. All energies are eV’s.

Cobalt
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Figure 7.7: Density of states (per spin) from LSDA.
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Figure 7.8: Total (both spin) density of states for the non-interacting Hamilto-
nian H0 in (i) eigenbasis (lower graph). (ii) “Hartree” basis (upper graph).
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Figure 7.9: Spin-polarized Hartree-Fock band structure relative to Fermi en-
ergy. [Majority spin (solid), minority spin (dashed)]
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Figure 7.10: Density of states (per spin) for Hartree-Fock band structure.
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7.1.3 Nickel

Atomic Number 28

Valence electrons 10

Lattice FCC

Wigner-Seitz radius [a0] 2.602

(Valence) Total energy: Hartree -77.698

[Ryd/atom] LDA -80.360

LSDA -80.363

Hartree-Fock -86.926

Coulomb energy U 3d: Slater F 0 24.69

[eV] Matrix elements 22.61

Constrained LDA 12.5

Magnetic moment: Experimental 0.62

[µB /atom] LSDA 0.58

Hartree-Fock 0.76
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Figure 7.11: Total (both spins) density of states obtained from the “first quan-
tization” Hartree calculation.
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n 0 1 2 3 4 5 6 7 8
∑

`C
0n
` .9865 .9593 .9732 .9828 .9684 .8888 .8862 .8827 .8787

∑
RC

Rn
`=0 .0011 .0305 .0019 .0013 .0096 .1843 .2124 .2392 .2312

∑
RC

Rn
`=1 .0363 .1867 .1208 .0637 .1430 .5242 .5188 .5160 .5504

∑
RC

Rn
`=2 .9626 .7827 .8773 .9350 .8473 .2915 .2688 .2448 .2184

En [eV] -2.28 1.07 -0.51 -1.72 0.03 9.27 9.42 9.58 10.22

σn [eV] 4.90 9.43 7.84 6.07 8.45 12.25 12.22 12.17 12.15

% DOS 9.5 10.7 10.0 9.5 10.3 12.7 12.3 12.5 12.5

nn(EF ) 1.83 1.50 1.66 1.79 1.60 0.70 0.67 0.64 0.59

Table 7.5: Some properties of the nine maximally localized Wannier functions.

Unm 0 1 2 3 4 5 6 7 8

0 26.16 21.87 23.67 23.70 22.64 15.58 15.59 14.87 14.45

1 21.87 22.07 21.05 21.57 20.73 13.92 14.68 14.19 13.03

2 23.67 21.05 23.99 22.38 21.64 15.00 14.59 14.34 14.54

3 23.70 21.57 22.38 25.46 22.91 15.77 15.08 14.83 14.45

4 22.64 20.73 21.64 22.91 23.17 14.38 14.07 14.74 14.38

5 15.58 13.92 15.00 15.77 14.38 14.72 10.95 10.63 10.34

6 15.59 14.68 14.59 15.08 14.07 10.95 14.51 9.83 10.20

7 14.87 14.19 14.34 14.83 14.74 10.63 9.83 14.35 9.75

8 14.45 13.03 14.54 14.45 14.38 10.34 10.20 9.75 14.06

Jnm 0 1 2 3 4 5 6 7 8

0 26.16 0.90 0.68 1.08 0.91 0.56 0.78 0.50 0.56

1 0.90 22.07 0.85 0.75 0.97 0.68 1.33 1.13 0.28

2 0.68 0.85 23.99 0.93 1.02 0.87 0.84 0.55 0.85

3 1.08 0.75 0.93 25.46 0.66 0.76 0.55 0.77 0.68

4 0.91 0.97 1.02 0.66 23.17 0.73 0.37 1.04 1.21

5 0.56 0.68 0.87 0.76 0.73 14.72 0.85 0.74 0.63

6 0.78 1.33 0.84 0.55 0.37 0.85 14.51 0.37 0.64

7 0.50 1.13 0.55 0.77 1.04 0.74 0.37 14.35 0.47

8 0.56 0.28 0.85 0.68 1.21 0.63 0.64 0.47 14.06

Table 7.6: Direct and exchange Coulomb matrix elements for Wannier func-
tions. All energies are eV’s.
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Figure 7.12: Density of states (per spin) from LSDA.
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Figure 7.13: Total (both spin) density of states for the non-interacting Hamil-
tonian H0 in (i) eigenbasis (lower graph). (ii) “Hartree” basis (upper graph).
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Figure 7.14: Spin-polarized Hartree-Fock band structure relative to Fermi en-
ergy. [Majority spin (solid), minority spin (dashed)]
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Figure 7.15: Density of states (per spin) for Hartree-Fock band structure.
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7.1.4 Copper

Atomic Number 29

Valence electrons 11

Lattice FCC

Wigner-Seitz radius [a0] 2.669

(Valence) Total energy: Hartree -100.099

[Ryd/atom] LDA -103.316

LSDA -103.316

Hartree-Fock -111.231

Coulomb energy U 3d: Slater F 0 26.27

[eV] Matrix elements 24.48

Constrained LDA 17.6

Magnetic moment: Experimental 0

[µB /atom] LSDA 0

Hartree-Fock 0
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Figure 7.16: Total (both spins) density of states obtained from the “first quan-
tization” Hartree calculation.
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n 0 1 2 3 4 5 6 7 8
∑

`C
0n
` .9725 .9782 .9896 .9897 .9775 .8857 .8837 .8807 .8821

∑
RC

Rn
`=0 .0040 .0024 .0009 .0008 .0035 .2137 .2203 .2463 .2293

∑
RC

Rn
`=1 .1416 .0988 .0257 .0266 .1023 .5633 .5713 .5694 .5746

∑
RC

Rn
`=2 .8544 .8988 .9735 .9726 .8942 .2230 .2084 .1843 .1960

En [eV] 0.01 -0.82 -2.26 -2.24 -0.73 9.59 9.80 9.96 9.93

σn [eV] 7.64 6.60 3.87 3.91 6.71 11.05 11.02 10.96 10.99

% DOS 9.3 9.6 8.6 8.6 9.2 14.0 13.5 13.7 13.6

nn(EF ) 1.64 1.71 1.87 1.87 1.70 0.59 0.56 0.53 0.54

Table 7.7: Some properties of the nine maximally localized Wannier functions.

Unm 0 1 2 3 4 5 6 7 8

0 23.92 22.81 24.18 23.85 22.95 14.42 14.01 14.06 13.66

1 22.81 25.38 24.92 24.62 23.36 14.48 14.16 13.73 14.53

2 24.18 24.92 27.60 25.28 24.25 15.08 14.98 14.12 14.46

3 23.85 24.62 25.28 27.57 25.01 14.64 14.82 14.64 14.36

4 22.95 23.36 24.25 25.01 25.19 14.34 14.04 14.21 14.26

5 14.42 14.48 15.08 14.64 14.34 14.05 10.05 9.52 9.92

6 14.01 14.16 14.98 14.82 14.04 10.05 13.94 9.59 9.61

7 14.06 13.73 14.12 14.64 14.21 9.52 9.59 13.74 9.49

8 13.66 14.53 14.46 14.36 14.26 9.92 9.61 9.49 13.81

Jnm 0 1 2 3 4 5 6 7 8

0 23.92 0.95 0.80 1.03 0.97 1.00 0.60 1.05 0.89

1 0.95 25.38 0.81 0.92 1.07 0.93 0.78 0.46 0.79

2 0.80 0.81 27.60 1.17 1.04 0.61 0.65 0.35 0.52

3 1.03 0.92 1.17 27.57 0.67 0.49 0.57 0.70 0.40

4 0.97 1.07 1.04 0.67 25.19 0.51 0.85 0.89 0.82

5 1.00 0.93 0.61 0.49 0.51 14.05 0.72 0.53 0.69

6 0.60 0.78 0.65 0.57 0.85 0.72 13.94 0.60 0.57

7 1.05 0.46 0.35 0.70 0.89 0.53 0.60 13.74 0.59

8 0.89 0.79 0.52 0.40 0.82 0.69 0.57 0.59 13.81

Table 7.8: Direct and exchange Coulomb matrix elements for Wannier func-
tions. All energies are eV’s.
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Figure 7.17: Total (both spins) density of states from LSDA.
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Figure 7.18: Total (both spin) density of states for the non-interacting Hamil-
tonian H0 in (i) eigenbasis (lower graph). (ii) “Hartree” basis (upper graph).
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Figure 7.19: Spin-polarized Hartree-Fock band structure relative to Fermi en-
ergy. [Majority spin (solid), minority spin (dashed)]
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7.2 Discussion

For all metals, Wannier functions 0 through 4 are most localized, with at least 95% of their
density in the home sphere, as can be seen from the upper table (1. row) on the second
page of each metal in the preceeding section. These Wannier functions also have the largest
d-character (4. row), greater than 78%, and we refer to them as a d-like Wannier function.
Most of these d-like Wannier functions have their associated energy (5. row) below the
Fermi level, and the associated width (6. row) is relatively small (compared to the other
Wannier functions), as a consequence of their large d-character. Accordingly, the projected
occupation nn(EF ) is also largest for the d-like Wannier functions.

Slater Integrals

Since for all four metals, the Wannier functions 0 through 4 have the largest d-character
(> 78%), we can calculate an averaged direct Coulomb d-interaction from the matrix ele-
ments that are shown in the lower table on the second page of each metal in the preceeding
section. The results are given in Tab. 7.9, together with Slater integrals, obtained from the
radial d-wave functions, see section 5.3.5. Compared to the estimates obtained from Slater
integrals, the corresponding averaged energies obtained from the Coulomb matrix elements
are slightly smaller, since the Wannier functions are (i) not pure in their d-character. (ii) not
restricted to their home sphere. Nevertheless, the Slater integrals offer a good estimate of
the size of Coulomb matrix elements, and are easy to obtain.

Metal U = F 0 F 2 F 4 J Udiag F 4/F 2 U − Usp

Fe 21.621 9.611 5.914 0.925 22.358 0.615

21.092 0.810 22.501 10.534

Co 23.175 10.312 6.346 0.992 23.966 0.615

22.592 0.871 24.046 11.955

Ni 24.692 11.000 6.773 1.059 25.535 0.616

22.608 0.876 24.171 11.294

Cu 26.272 11.724 7.225 1.129 27.171 0.616

24.485 0.943 25.930 13.741

Table 7.9: For each metal, the first line shows the three Slater integrals and
quantities calculated therefrom, i.e. the last term in Eqs. (5.80) and (5.81).
The second line shows the corresponding values evaluated from the Coulomb
matrix elements in the preceeding sections, that is the middle term in Eqs.
(5.80) and (5.81). All energies in eV’s.

The Slater integrals F 2 and F 4 for Fe, Co and Ni are also given in Ref. [61], but for ions,
e.g. Fe2+, Co3+. Since the lack of Coulomb repulsion localizes the orbitals, the integrals
are (a few eV) larger compared to ours. Considering this effect, the Slater integrals are in
good agreement with ours.
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Figure 7.21: The averaged direct Coulomb interaction U (see Eq. (5.79)) as a
function of the atomic number Z evaluated as: (i) The Slater integral F 0. (ii)
The averaged Coulomb matrix with Wannier functions.

We also give the ratio F 4/F 2, which is often set to 0.625, e.g. in Ref. [62], in order to
determine the complete Coulomb d-matrix from U and J , see section 5.3.5.2

Also in Tab. 7.9, we have calculated U−Usp. Here, Usp is the average of the 4×4 sub block
of direct sp Coulomb matrix elements, i.e. the block with matrix elements of the Wannier
functions 5 through 8 which have rather large s- and p-character. Why this is an interesting
quantity to know will be explained below, where we discuss our results with respect to
many-particle model Hamiltonians.

In Fig. 7.21, we have plotted the data of the first column of Tab. 7.9. It is interesting to note
that the Slater integral F 0 as a function of the atomic number is found to be on a straight
line, i.e. F 0(Z) = 1.55 eV · Z − 18.60 eV. Qualitatively, this behavior can be explained,
since for increasing Z , the valence electrons are drawn closer to the nuclei, causing a higher
localization (within the atomic sphere). Accordingly, more localized wave functions lead to
larger Coulomb matrix elements.

Magnetic Moments

As mentioned above, we have performed LSDA calculations for the metals Fe, Co, Ni and
Cu. Before turning to the ferromagnetic metals, we would like to point out the situation for
Cu. Although Cu has no magnetic moment, we may still perform such a calculation since
the LSDA formalism is only an extension to the LDA. During the self-consistency cycle,
we are able to track the size of the magnetic moment. Starting from a state for which the

2In some references [18, 60], the ratio “F 2/F 4” is set to 0.625. We wonder whether these are probably
printing errors or the word “ratio” is understood in a different sense.



124 7. Results

M
ag

ne
tic

 M
om

en
t

0

0.5

1

1.5

2

2.5

3

3.5
Experiment
LSDA
Exchange-only
Hartree-Fock

Fe Co Ni

Experiment LSDA Exchange-only Hartree-Fock
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Figure 7.22: Magnetic moments for 3d ferromagnets from experiment [46] and
different theories, in units of µB/atom.

spin symmetry is broken, we find the magnetic moment to converge to zero again. This
behavior is different for the materials mentioned above, for which the LSDA converges to a
spin-polarized solution when starting from a state with broken symmetry. The spin-up and
spin-down DOS are equal, and Fig. 7.17 shows the total density of states that is found upon
self-consistency.

For the 3d transition ferromagnets, a comparison of the magnetic moment obtained from
LSDA is made in Fig. 7.22. As can be seen, the predicted magnetic moment agrees with
experiment very well. The qualitative behavior of the magnetic moment, as we move from
Fe to Ni, which means that the number of d electrons is increased from 8 to 10, can be
explained by the Friedel Model and the Stoner theory [63].

In addition, we have performed “exchange-only” LSDA calculations in which the exchange-
correlation potential (2.43) is replaced by an exchange-only potential. This exchange-only
potential is obtained by omitting the correlation terms in the Barth-Hedin potential (C.18),3

and is a local (density) approximation of the non-local Hartree-Fock potential. Using the

3The correlation terms are the terms with subscript c appearing in (C.16).
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Figure 7.23: Total energies of valence electrons from different approximations
for the 3d transition metals Fe thru Cu.

(local) exchange-only potential, we obtain an approximation for the Hartree-Fock solution
since correlations are neglected. Put in other words, we obtain a solution which is closer
to Hartree-Fock than (X+C) LSDA, but still an approximation, since the Hartree-Fock po-
tential is non-local. The bands we have obtained look similar to the LSDA bands, thus, we
have not plotted them. The magnetic moments were found to be larger than in LSDA, see
Fig. 7.22. This indicates that Hartree-Fock overestimates magnetic moments, and (indeed)
our Hartree-Fock magnetic moments are even larger than the magnetic moments from the
exchange-only calculations.

Total Energies

In order to discuss the (absolute) total energies from different approximations, we have col-
lected the results (Sec. 7.1) in Fig. 7.23. Firstly, the total energy of the valence electrons is
a decreasing function of Z , since without considering interaction, more low lying d-states4

are being occupied, lowering the total energy. On the other hand, more electrons are causing
Coulomb repulsion which increases the total energy, however, this is a smaller effect. The
Hartree-Fock trial function is a Slater determinant, whereas in Hartree and LSDA, the trial
function is just a simple product of one-particle wave functions. Thus, the Hartree-Fock
total energy comes closest to the true total energy and provides a strict upper bound. Ac-
cordingly, since the LSDA energies are higher than Hartree-Fock total energies (Fig. 7.23),
the difference between the two is a lower bound for the error in the LSDA energy, which we
find increasing with Z (4.48, 5.38, 6.56, 7.91 Ryd for Fe, Co, Ni, Cu respectively). These

4See Figs. 7.3, 7.8, 7.13 and 7.18.
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Ref. Fe Co Ni Cu

U J U J U J U J

[9] 1.2 0.73 2.4 0.50 3.7 0.27

[12] 1.63 1.09 2.45 1.70 4.08

[18] 2.47 0.5

[60] 2.3 0.9 3 0.9 4 0.9 4 0.9

here 21.1 0.81 22.6 0.87 22.6 0.88 24.5 0.94

Table 7.10: Averaged direct and exchange Coulomb matrix elements used in
several references. However, direct comparison of the values is difficult, since
different models and approximations were being used. Energies in eV.

errors appear very large; even for the corresponding atoms, see Ref. [49], the errors are quite
large (2.21, 2.33, 2.40, 2.46 Ryd).

The difference of the Hartree to the Hartree-Fock total energy (6.24, 7.56, 9.23, 11.13 Ryd)
is also increasing with Z , since the exchange energy, which is missing in Hartree, becomes
smaller with higher electronic density.

Within the local density approximation, the LSDA total energy is (not surprisingly) better
than Hartree total energy, since exchange-correlation effects are (locally) accounted for.

Finally, we note that the difference between the LDA and LSDA total energy, i.e. the energy
of spin polarization, is very small for the ferromagnets and zero for Cu (27, 10, 3, 0 mRyd),
lowering the energy of the spin-polarized solution of the Kohn-Sham equations. Of course,
these are relative differences in the total energy. The accuracy of our absolute total energy
greatly exceeds the energy gained by spin polarization (of the ferromagnets).

Size of Coulomb Matrix Elements

We now wish to discuss the size of our Coulomb matrix elements. The Coulomb matrix
elements we have determined from first principle Wannier functions are extremely large
compared to the U ’s commonly used in model Hamiltonians. In Tab. 7.10, we give U ’s and
J ’s found in the literature, as well as our own results. How can this huge discrepancy be
explained? To answer this question, it is important to look at the models that are being used.

In this work, we have started from hopping matrix elements of the completely non-interacting
Hamiltonian H0 in Eqs. (6.1) and (6.3). When looking at the DOS ofH0,5 it is not surprising
that large U ’s are needed to pull the 3d-bands back into the region of the 4s and 4p-bands of
the LDA or Hartree band structure. While our procedure is very elementary, usually more
sophisticated procedures are used. One starts from an LDA calculation and some model
calculation with screened Coulomb matrix elements is added on top, since the LDA band
structure is already reasonable and looks like a good starting point. Despite the success of
some of these procedures, some points can be questioned. (i) Starting from LDA, it is not

5In Figs. 7.3, 7.8,7.13 and 7.18.
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clear which correlations are already included in the LDA treatment. (ii) The Coulomb inter-
action is usually restricted to 3d-orbitals. Thus, these corrections to LDA are not systematic.
Often, as mentioned in the introduction, U and J are just semiempirical fitting parameters
which are adjusted in a way that experimental quantities, e.g. the magnetic moment, are
correctly reproduced by the model.

Most model calculations assume very localized, pure (in `-character) Wannier functions.
In particular, they often assume that LDA or some one-electron-like treatment is adequate
for non-d electron states, and that the only explicit correlations that need to be included
are related to on-site Coulomb U ’s for the d (or f ) states. These types of assumptions
raise some difficulties for us to connect our treatment to the model Hamiltonians, since
the orthogonalization of localizing our Wannier functions requires mixed `-character of the
resulting orbitals.

There are factors which suggest smaller U ’s for model Hamiltonian calculation. Starting
from our large U ’s, these factors include:

i.) Since we calculate U ’s for all of the orbitals, we are implicitly including correlation
effects for spd-states. But, as mentioned above, in model Hamiltonian calculation, the
Coulomb interaction is usually restricted to d-orbitals. Consider Eq. (6.5) with only
diagonal (on-site) matrix elements Wnn,nn of equal size. The effect of such a term is
just an overall shift of the bands. Therefore, if we restrict the interaction to d-orbitals,
it seems reasonable to subtract the sp-interaction from the d-interaction, since only
the difference between the two accounts for correlation effects. Thus, we have also
calculated U − Usp in Tab. 7.9 which is about half the size of U . However, things are
more complicated since the Coulomb matrix is not diagonal. Nevertheless, this is a
step towards smaller U ’s.

ii.) Because we have the freedom of choosing the basis set, we can regard this set as
consisting of less localized one-particle states which has the consequence that the U ’s
are smaller. In this sense, the Slater integral F 0 is an upper bound for U . The lower
bound is zero, since if we consider completely delocalized Wannier functions6 as our
basis set, the U ’s become zero for an infinite number of mesh points in Eq. (4.3).
On the other hand, the model Hamiltonians we are dealing with, e.g. the multi-band
Hubbard Hamiltonian, always assume localized basis sets.

As an example of this, we have calculated a less localized Wannier state (by doing
fewer steps in the Marzari-Vanderbilt minimization procedure). In this case, the high-
est d-character state, which is almost pure d-like, has only 58% of its charge density
in the center muffin-tin, and 95% within the first 3 shells. Now, we only find U about
13 eV for this less localized d-state.

However, with such less localized Wannier states, the tight-binding assumption for the
one-particle matrix elements would no longer hold, i.e. one cannot restrict them to
a few neighbor shells, and also the Hubbard assumption that only on-site Coulomb
matrix elements are non-vanishing would no longer hold.

6One can actually construct these by choosing a negative step size in Eq. (4.23). Of course, this is not the
purpose of the Marzari-Vanderbilt method.
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iii.) Since we are working with bare unscreened Coulomb matrix elements, we would have
to apply a many-body approximation which includes screening effects, i.e. go far be-
yond Hartree-Fock, for example use the RPA7. However, in Refs. [9, 18], for instance,
second order perturbation theory (which does not include screening) was used, requir-
ing to use screened Coulomb matrix elements.8 One may also think of the non-d states
having some screening contribution to the effective U ’s. The screened interaction for
Ni is given Ref. [64] as 2.2 eV, while the unscreened interaction is given as approxi-
mately 27 eV, which is in good agreement with the Slater integral F 0 = 24.7 eV.

These problems highlight the fact that there is no ab-initio method of deriving the model
multi-band Hubbard Hamiltonian. We have determined all the matrix elements of the full
second-quantized Hamiltonian (6.1) from first principles. Nevertheless, solving this Hamil-
tonian (in its full generality) seems impossible. One has to keep in mind that the Hubbard
Hamiltonian is just a model Hamiltonian, i.e. a simplified version of the full Hamiltonian
(6.1), which allows to study physical effects without going through all the complications
the full Hamiltonian involves. However, reasonable estimates for the parameters involved
are necessary to apply the results to real materials.

Off-site Coulomb Matrix Elements

In the preceeding discussion, we have only talked about on-site Coulomb matrix elements. A
central assumption of the Hubbard model is that the electrons only interact when being at the
same lattice site. That is, all off-site Coulomb matrix elements are omitted. Consider direct
matrix elements W12,21 for R1 6= R2 with localized Wannier functions. Within the ASA,
the contributions from all atomic spheres are taken into account by Eq. (5.42). From Eqs.
(5.43) and (5.44), we see that a large contribution arises if RA...D = 0. Hence, R 6= R′ in
Eq. (5.43) (since R1 6= R2) and the contribution is approximately given by (5.46). Without
knowing the Wannier functions, we may estimate the size of the intra-band off-site Coulomb
matrix element as W12,21 ≈ e2/|R1 − R2| when we assume the Wannier functions to be
very localized. For nearest-neighbor matrix elements, we find about 6 eV for our metals.9

This seems very large and how can these terms be omitted in the Hubbard model altogther?
Following the discussion in section 6.3.2, one has to use (6.29) (instead of (5.42)) and terms
with R 6= R′ are omitted in (6.29).10 Consequently, since the potential from the nuclear
point charge and the electronic charge density can be restricted to a single muffin-tin, the
Coulomb matrix elements may, to some approximation, be restricted to on-site elements.

7Random-phase approximation which is a summation of all bubble diagrams. This seems to be difficult to
apply to multi-band systems, however.

8And, as shown on page 89, these are smaller than bare ones.
9Using Eqs. (A.3) and (A.6).

10The impact of using (6.29) (instead of (5.42)) on the size of on-site Coulomb matrix elements is small
when the Wannier functions are well localized, since for this situation W (12, 34; 0, 0) is (by far) the largest
contribution in (5.42) and (6.29).
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Conclusions & Outlook

8.1 Conclusions

We have shown in this work that ab-initio band structure methods, namely the LMTO
method [31, 32] within the ASA, can be used for a first-principles calculation of well lo-
calized Wannier functions [29]. This was achieved by using a method proposed by Marzari
and Vanderbilt [33]. The resulting maximally localized Wannier functions for the 3d transi-
tion metals Fe, Co, Ni and Cu have at least 87% of their charge density within the home MT
sphere. In order to construct the (generalized) Wannier functions, rotations among the Bloch
bands at each k-point are necessary which mix their `-characters even more. Hence, the re-
sulting Wannier functions are not pure with respect to their `-character; for well localized
d-like Wannier functions, we have found a d-character greater than 78%.

These Wannier functions serve as a minimal basis, i.e. a one-particle basis for the valence
band states containing only 4s, 4p and 3d-orbitals, in which the many-particle Hamilto-
nian is expanded. From these localized Wannier functions, constructed from Hartree band
states, the on-site and inter-site one-particle matrix elements of the many-particle Hamilto-
nian were calculated. A good localization of the Wannier functions is needed to keep tight-
binding (hopping) matrix elements restricted to a small number of near neighbors. We have
proposed two methods to evaluate Coulomb matrix elements from Wannier functions. The
Coulomb matrix elements within the localized Wannier states are similarly most important
between on-site and nearest-neighbor Wannier functions.

The result is thus an electronic multi-band Hamiltonian in second quantization with first-
principles one- and two-particle matrix elements. The Hamiltonian is of the form of an
extended multi-band Hubbard model but without adjustable parameters, i.e. the parameters
are directly calculated for the given materials. The only approximations still involved are the
ones inherent to the ab-initio band structure method used [e.g., the muffin-tin assumption,
the ASA approximation, the choice of linearized orbitals in the LMTO and the “frozen-
core” approximation] and the truncation in the number of bands (states) per site. In this
multi-band Hamiltonian, the hopping matrix elements are obtained for completely non-
interacting valence electrons moving in the effective core potential. Hence, in contrast to
other approaches which use LDA as the starting point, we start from a well defined situation
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where the problem of double counting interactions (already included in the effective LDA
band structure) is avoided.

This resulting multi-band Hamiltonian was studied within the Hartree-Fock approximation
for the 3d transition metals Fe, Co, Ni and Cu. For the ferromagnets, the resulting magnetic
moments of this treatment were found to be about 20 to 30 % larger than within LSDA
which is due to the fact that Hartree-Fock tends to overestimate exchange effects. This is
also indicated by a local exchange-only calculation, where the magnetic moments were
found to be about ten percent larger than within LSDA. The resulting Hartree-Fock total en-
ergy is lower than in LSDA, providing an error estimate for the absolute LSDA energy. The
(Hartree-Fock) band structure shows the 3d-bands below the 4s and 4p-bands. Responsible
for this behavior is the Fock self-energy term which subtracts the self-interactions included
in the Hartree self-energy term.

For the metals mentioned above, we find on-site direct Coulomb matrix elements (“Hubbard-
U ’s”) on the magnitude of 21 to 25 eV for 3d Wannier states. This is the magnitude dis-
cussed already earlier [6] and similar to those for atomic 3d-states, as well as the magnitude
of the (3d) Slater integral F 0. These U -values are much larger than commonly expected or
used in models. We have discussed reasons why it may be justified to use smaller U ’s in
model Hamiltonian studies, e.g. dielectric screening, highlighting the fact that reasonable
estimates for model parameters are necessary to apply the results to real materials.

8.2 Outlook

Our current approach can, of course, be further extended in many directions. We would like
to suggest some possibilities:

i.) One can study the first-principle Hamiltonian within many-body methods or approxi-
mations which go beyond Hartree-Fock. For example, second order perturbation the-
ory in U [9, 18], random-phase approximation (RPA) which is a summation of all
bubble diagrams, a multi-band version of the DMFT as in Refs. [10, 13, 15, 17].

ii.) Another promising extension would be to perform Hartree-Fock calculations on the
first quantized level, i.e. solve the Hartree-Fock equations which involves solving the
Schrödinger equation for a non-local potential. This way, one could exploit analogies
between effective single-particle properties from first and second quantization calcu-
lations in order to further bridge the gap between first-principles calculations for real
materials and model Hamiltonian calculations.

iii.) We have (as usual) only considered the valence electrons in a frozen-core potential,
which contains exchange-correlation from the core electrons in the local approxima-
tion. One may try to consider the many-particle effects of all electrons, i.e. not use the
frozen-core approximation. However, since the number of electrons is quite large in
the 3d transition metals, one would probably have to start by looking at easier systems,
e.g lithium. In any case, this approach would require applying the LMTO method sev-
eral times (for each principal quantum number), since the LMTO can only cope with
one type of `-orbitals at a time, e.g. 2s but not 2s and 1s simultaneously.
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iv.) Using the FFT method (Sec. 5.3.2), we can evaluate screened Coulomb matrix el-
ements for the Yukawa potential which arises from the Thomas-Fermi approxima-
tion. One can also try to consider screening by a Lindhard theory, generalized to real
band structures and matrix elements between Bloch functions instead of free electron
(plane-wave) matrix elements, and calculate Coulomb matrix elements using the re-
sulting dielectric function.

v.) Also, the method could be applied to really correlated systems, e.g. heavy fermion
systems (like UPt3), superconductors, semiconductors, quantum dots, etc. However,
such systems have more than one atom per unit cell and consist of different atoms
which leads to additional complications.

Ultimately, the goal is to establish a reliable method suitable to describing electronic proper-
ties of solids. This new method should treat electron-electron interactions by using a many-
particle method (on the second quantized level) and not depend upon LDA such as the
(other) current approaches in this area.



Appendix A

Conventions

Units Throughout, we use atomic Rydberg units where ~ = 2m = e2/2 = 1. At some
points however, for clarity, we will write quantities like ~, the mass of the electron m or the
charge of the electron e explicitly. Note that

a0 = ~2/me2 ≈ 0.529 Å and Ryd = e2/2a0 ≈ 13.6 eV . (A.1)

Here is a useful conversion table for atomic Rydberg and MKSA units:

Quantity Symbol Rydberg MKSA

Length ` 1 5.2917725 ·10−11 m

Energy E 1 2.1798741 ·10−18 J

Charge q 1 1.1329105 ·10−19 C

Charge density n 1 7.6452571 ·1011 C/m3

some constants:

Planck’s quantum ~ 1 1.05457266 ·10−34 J·s
(Abs.) charge of electron e

√
2 1.60217733 ·10−19 C

Bohr radius, ~2/me2 a0 1 5.29177249 ·10−11 m

Energy 1 electron Volt eV ≈ 1/13.6 1.60217733 ·10−19 J

Rydberg energy, e2/2a0 Ryd 1 2.1798741 ·10−18 J

Hartree energy, e2/a0 2 4.3597482 ·10−18 J

Speed of light c ≈ 274 2.99792458 ·108 m/s

Bohr magneton µB
√

2 9.2740154 ·10−24 J/T

Mass of electron me 1/2 9.1093897 ·10−31 kg

Vectors Vectors in R3 are represented by bold letters. We have:

r = (rx, ry, rz) , r = |r| =
√

r · r , r̂ ≡ Ω ≡ {ϑ, ϕ}

rx = r sinϑ cosϕ , ry = r sinϑ sinϕ , rz = r cosϑ
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Angular momentum quantum numbers We use the common short hand notation L =
{`,m}. For explicit calculations, this notation can be regarded as L = `2 + `+m:

L 0 1 2 3 4 5 6 7 8 9 . . .

` 0 1 1 1 2 2 2 2 2 3 . . .

m 0 −1 0 +1 −2 −1 0 +1 +2 −3 . . .

FCC Lattice (face-centered cubic) Set of tranlation vectors:

a1 =
a

2
(ey + ez) , a2 =

a

2
(ez + ex) , a3 =

a

2
(ex + ey) (A.2)

Relations between the real space lattice constant a, the volume of the primitive cell Ω, the
Wigner-Seitz radius S and the nearest-neighbor distance R0:

Ω =
a3

4
=

4π

3
S3 , a =

(
16π

3

) 1
3

S , R0 =
1√
2
a =

(
32π2

9

) 1
6

S (A.3)

Reciprocal lattice points k with high symmetry in FCC structure: (in units 2π/a)

Γ X W L K U

kx 0 1 1 .5 .75 1

ky 0 0 .5 .5 .75 .25

kz 0 0 0 .5 0 .25

The irreducible wedge of the Brillouin zone (IBZ) is spanned by these six k-points. Conse-
quently, the IBZ may be expressed in terms three tetrahedra. These tetrahedra are given by
the four corner k-points. The IBZ can, for example, be expressed as the three tetrahedra:

Γ X L K , X W L K , X W U L (A.4)

BCC Lattice (body-centered cubic)

a1 =
a

2
(ey + ez − ex) , a2 =

a

2
(ez + ex − ey) , a3 =

a

2
(ex + ey − ez) (A.5)

Ω =
a3

2
=

4π

3
S3 , a =

(
8π

3

) 1
3

S , R0 =

√
3

2
a =

(
3π2
) 1

6
S (A.6)

[2π/a] Γ H N P

kx 0 1 .5 .5

ky 0 0 .5 .5

kz 0 0 0 .5

The IBZ is simply a single tetrahedron:

Γ H N P (A.7)



Appendix B

Mathematical definitions

Spherical harmonics

Legendre polynomials:

P`(x) =
1

2` `!

d`

dx`
(x2 − 1)`

Associated Legendre function:1

Pm` (x) = (−1)m(1 − x2)
m
2
dm

dxm
P`(x) m ≥ 0

A definition that accounts for positive and negative m is:

Pm` (x) =
(−1)m

2` `!
(1 − x2)

m
2
d`+m

dx`+m
(x2 − 1)`

Spherical harmonics: (see Ref. [52])

YL(r̂) ≡ Y m
` (ϑ, ϕ) ≡ 〈ϑϕ|`m〉 =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cosϑ) eimϕ (B.1)

Orthogonality:

〈L|L′〉 =
∑

Ω

〈L|Ω〉〈Ω|L′〉 =

∫

4π

d2Ω Y ∗
L (Ω) YL′(Ω) = δLL′ (B.2)

Completeness:

〈Ω|Ω′〉 =
∑

L

〈Ω|L〉〈L|Ω′〉 =
∑

L

YL(Ω) Y ∗
L (Ω′) = δ2(Ω − Ω′) (B.3)

1Phase convertion according to Condon-Shortley, as in Refs. [54, 52].
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Spherical Bessel function

The spherical Bessel function is defined by (see also [52] Eq. 16.10 and [65] Eq. 10.1.25):

j`(x) = (−x)`
(

1

x

d

dx

)`(sinx

x

)
(B.4)

Gaunt coefficients

Definition (see Eq. (6) page 175 in Ref. [54]):

ck(L,L′) ≡
√

2

2k + 1

+1∫

−1

dx Θm−m′

k (x) Θm
` (x) Θm′

`′ (x) (B.5)

where Θm
` (x) ≡

√
2`+ 1

2

(`−m)!

(`+m)!
Pm` (x)

The Gaunt coefficients are real and obey the symmetry relation:

ck(L,L′) = (−1)m−m′

ck(L′, L) (B.6)

It follows that:

CLL′L′′ ≡
∫
d2Ω YL(Ω) Y ∗

L′(Ω) YL′′(Ω) = δm′′,m′−m

√
2`′′ + 1

4π
c`

′′

(L′, L) (B.7)

Moments

The qth order moment of a density function f(x) about x0 is defined as: (see Ref. [50])

Mq =

∫
dx f(x) (x− x0)

q (B.8)

The moment about the origin is the moment about x0 = 0.

Remark: In our case, the density function f(x) is the density of states.

Step function

Θ(x) ≡





0 x < 0

1/2 x = 0

1 x > 0

so that

y∫

−∞

dx δ(x) = Θ(y) (B.9)



Appendix C

Miscellaneous

C.1 Symmetry and Brillouin Zone Integration

We denote αk as the rotation α in the point group of the crystal applied to the vector k. To
replace the integral in (3.39) by an integral over the IBZ, it is required that (3.42) and

〈ψαk|P |ψαk〉 = 〈ψk|P |ψk〉 ∀ α (C.1)

hold, where for simplicity, we have dropped the band index n. From1

{α|t}ψk(r) = exp[iφ(α,k)]ψαk(r) (C.2)

it follows that

α|ψk〉 = exp[iφ(α,k)]|ψαk〉 and 〈ψk|α† = exp[−iφ(α,k)]〈ψαk | . (C.3)

Here, α† is defined by α†α = 1, i.e. the inverse operation to α, and φ(α,k) is an arbitrary
real function. Hence, we can write (C.1) as:

〈ψk|α†Pα|ψk〉 = 〈ψk|P |ψk〉 → α†Pα = P → [P, α] = 0 (C.4)

Accordingly, we have to require that the projection operator P commutes with all the rota-
tions α in the point group of the crystal.

Proof that P` and α commute

The projection operator P` onto the `-component is defined by:

P` ≡
∑

m

|`m〉〈`m| (C.5)

A rotation α of the point group is in general an improper rotation, but may always be de-
composed as α = Πβ, where Π is the parity operator defined by Πψ(r) = ψ(−r) and β is

1See Eq. (3.6.5) in Ref. [30]
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a proper rotation. We realize that, if L is the angular momentum operator of a system, these
rotations β can be expressed as2

β = e−iL·~β . (C.6)

Acting on any state |ψ〉, it rotates |ψ〉 in the positive sense about the axis ~β by angle |~β|.
Next, we realize that:

L2|`m〉 = `(`+ 1)|`m〉 and Lz|`m〉 = m|`m〉 (C.7)

Since β and L2 commute, the state β|`m〉 is again an eigenstate of L2:

L2β|`m〉 = βL2|`m〉 = `(`+ 1)β|`m〉 (C.8)

The operators β and Lz do not commute, we can nevertheless expand the state β|`m〉 in
terms of |`′m′〉. Since, from (C.8), we already know that its eigenvalue is `(` + 1), we
can expand β|`m〉 in terms of just |`m′〉. Moreover, from parity operation onto spherical
harmonics (B.1), i.e.3

〈ϑϕ|Π|`m〉 = 〈π − ϑ, ϕ+ π|`m〉 = (−1)`〈ϑϕ|`m〉 , (C.9)

we see that |`m〉 is an eigenstate of Π. Therefore it is possible to expand α|`m〉 in terms of
|`m′〉 and write:

α|`m〉 =
∑

m′

|`m′〉〈`m′|α|`m〉 and 〈`m|α =
∑

m′

〈`m|α|`m′〉〈`m′|

Now it is easy to see that P` and α commute:

P`α =
∑

m

|`m〉〈`m|α =
∑

mm′

|`m〉〈`m|α|`m′〉〈`m′|

αP` =
∑

m

α|`m〉〈`m| =
∑

mm′

|`m′〉〈`m′|α|`m〉〈`m|

As we wished to prove.

C.2 Coulomb Matrix Elements for the Hydrogen Atom

We consider the well-known hydrogen atom whose wave functions are explicitly known.4

The one-particle energies are simply given by the Lyman formula En = −ERyd/n
2 which

only depends on the principal quantum number n. A hydrogen state depends on the three
quantum numbers n, `,m. It is helpful to reduce the number of indices at each Coulomb
matrix element from 12 to 4 by introducing i = {n, `,m}:

ψi(r) ≡ ψn`m(r) = Rn`(r)Y
m
` (r̂) (C.10)

We simply label the states by:

2See e.g. Eq. (17-1) Ref. [51].
3See e.g. Eq. (6-64) Ref. [51].
4See Eq. (6.43) and (6.60)-(6.65) Ref. [66], or Eq. (7-19) and (7-20) Ref. [51].
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

n` 1s 2s 2p 2p 2p 3s 3p 3p 3p 3d 3d 3d 3d 3d

m 0 0 −1 0 +1 0 −1 0 +1 −2 −1 0 +1 +2

We have calculated all Coulomb matrix elements for the wave functions up to principal
quantum number 3, using the method in section 5.3.1. Thus, we are considering 1+4+9=14
states and 144=38,416 matrix elements. Explicitly, we calculated:

Wi1i2i3i4 =

∫
d3r d3r′ ψ∗

i1(r)ψ
∗
i2(r

′)
e2

|r − r′| ψi3(r
′)ψi4(r) (C.11)

Since r and r′ may be interchanged and since the interaction is an hermitian operator, we
have the trivial symmetry among the indices

Wi1i2i3i4 = Wi2i1i4i3 = W ∗
i4i3i2i1 = W ∗

i3i4i1i2 , (C.12)

which reduces the number of matrix elements that have to be evaluated from 38,416 to
9,751. Additional symmetry arises from properties of the spherical harmonics which causes
all matrix elements to be real and many to vanish. From the 9,751 matrix elements, 1,062
do not vanish. And from the initial 38,416 matrix elements, 3,800 do not vanish. And from
these 3,800 elements, only 274 differ in their absolute value.

Since, we don’t want to list all these 274 numbers, we choose to restrict ourselves to the
five states up to n = 2. From the 54=625 matrix elements, only 16 different absolute values
occur from 107 non-vanishing matrix elements. These are given in the table below together
with their sign and indices.

|Wi1i2i3i4 | [Ryd] |Wi1i2i3i4 | [eV] sign and i1i2i3i4
1.250000 17.00712 +0000
0.485597 6.60688 +0220, +0330, +0440
0.419753 5.71103 +0110
0.391406 5.32535 +3333
0.370312 5.03836 +2222, +2442, +4444
0.349219 4.75136 +2332, +3443
0.324219 4.41122 +1221, +1331, +1441
0.300781 4.09234 +1111
0.178710 2.43148 +0001
0.058594 0.79721 −1124, +1133, +1212, +1313, +1414
0.043896 0.59723 +0011, +0101
0.042188 0.57399 +2424
0.034141 0.46451 −0024, +0033, +0202, +0303, +0404
0.025745 0.35028 +0124, −0133, +0142, −0212, −0313, −0414
0.021094 0.28700 +2323, −2433, +3434
0.017163 0.23352 +0111, +0221, +0331, +0441

By means of (C.12) and the table, all 625 matrix elements can be obtained. Here is an
example:

W2p,2p,1s,2s = W3301 = W0133 = −0.35028 eV
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Moreover, we should note that when the charge of the nucleus is Z , the one-particle ener-
gies are En = −ERydZ

2/n2 and the Coulomb matrix elements are the ones for hydrogen
multiplied by Z .

The energies (2.36) and (2.37) may be compared to the corresponding values obtained from
hydrogen-atom-like wave functions (for Z = 3). Using the table above we find:5

U00 = 51.02 eV , U11 = 12.28 eV , U01 = 17.13 eV (C.13)

ε0 = −122.45 eV , ε1 = −30.61 eV (C.14)

C.3 Exchange-Correlation Potential and Energy

Barth and Hedin [36] have proposed useful estimates for the exchange-correlation energy
εxc(n

↑, n↓) and the exchange-correlation potential vσxc(n
↑, n↓) for the spin-polarized case,

which is a generalization of the spinless case proposed earlier by Hedin and Lundqvist [67].
The estimates are local, i.e. the εxc and vσxc only depend on the densities n↑ and n↓ at r. The
total density (at r) is n = n↑ + n↓. Remembering that we use atomic Rydberg units, the
electron gas parameter rs is given by:

4π

3
r3s a

3
0 =

1

n
↔ rs =

(
3

4π
· 1

n

)1/3

(C.15)

Using the definitions

x =
n↑

n
a = 2−1/3 f(x) =

x4/3 + (1 − x)4/3 − a

1 − a

γ =
4 a

3 (1 − a)
≈ 5.1298 α0 =

(
4

9π

)1/3

ε0x =
3

2π α0
≈ 0.9163

cP = 0.0504 cF = 0.0254 rP = 30 rF = 75

εPx (rs) = −ε
0
x

rs
εPc (rs) = −cP F

( rs
rP

)
εFc (rs) = −cF F

( rs
rF

)
(C.16)

where F (z) = (1 + z3) ln

(
1 +

1

z

)
+
z

2
− z2 − 1

3

µPx (rs) =
4

3
εPx µPc (rs) = −cP ln

(
1 +

rP

rs

)
νc(rs) = γ (εFc − εPc )

A(rs) = µPx (rs) + νc(rs) B(rs) = µPc (rs) − νc(rs) ,

the exchange-correlation energy and potential are given by (see Fig. C.1):

εxc(n
↑, n↓) = εPx (rs) + εPc (rs) + γ−1f(x)

[
µPx (rs) + νc(rs)

]
(C.17)

vσxc(n
↑, n↓) = (2nσ/n)1/3A(rs) +B(rs) (C.18)

5Note that: Uij = Z ·Wijji
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Figure C.1: The result (C.18) as a function of the spin-up electrons x for vari-
ous electronic densities. The rs values are indicated next to the curves.

Note that when n↑ = n↓ = n/2, i.e. the spinless case, we find x = 1
2 and f(1

2) = 0. Hence,
the above expressions reduce to (see Fig. C.2):

εxc(n) = εPx (rs) + εPc (rs) (C.19)

vxc(n) = µPx (rs) + µPc (rs) (C.20)
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Figure C.2: The function Eq. (C.20) for the spinless case (solid) and (for com-
parison) the exchange potential from a uniform electron gas in Hartree-Fock
approximation (dashed), see Eq. (1.1) in Ref. [36].
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C.4 Evaluation of
∫ +1

−1 dx
∫ +1

−1 dy
∫ +1

−1 dz 1
r2

We wish to evaluate the integral

C ≡
+1∫

−1

dx

+1∫

−1

dy

+1∫

−1

dz
1

r2
. (C.21)

To this end, we divide the volume V of the 2 × 2 × 2 box into two parts: (i) The volume
V1 of a sphere with radius 1. (ii) The remaining volume V2. Now, we evaluate C for the two
volumes separately:

C =

∫

V1

d3r
1

r2
+

∫

V2

d3r
1

r2
= C1 + C2 trivially C1 = 4π (C.22)

The second integral is solved by numerical Monte Carlo integration, see Ref. [48], with a
number of sample points N on the order of 1014. By separating the volume, higher accuracy
is achieved since the error estimate (Eq. (7.6.1) in [48]) depends on the variance of 1/r2 in
the volume. Obviously, the variance is smaller for V2 than for V . As a final result we find6

C = 15.34825 . (C.23)

C.5 Spherical Harmonics Expansion

Any function A(r) within a (muffin-tin) sphere may be expanded in terms of spherical
harmonics:

A(r) =
∑

L

AL(r)YL(r̂) (C.24)

If two functions A(r) and B(r) are given via their coefficients AL(r) and BL(r), then the
corresponding coefficients FL(r) of the function F (r) = A(r)B(r) are given by

FL(r) =
∑

L1,L2

AL1(r)BL2(r)CL1LL2 , (C.25)

as can easily be seen from the definition of the Gaunt coefficients CLL′L′′ in appendix B. We
may use (C.25) to multiply a function with a plane wave ek(r) ≡ e−ikr whose coefficients
are given by (see Eq. (16.127) in Ref. [52])

ekL(r) = 4πj`(kr)
[
i`YL(k̂)

]∗
, (C.26)

where j` is the spherical Bessel function (B.4).

6With an error estimate which is small enough for allowing the statement: The result is “absolutely correct”
to the digits given.
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C.6 Lattice Properties

The FCC and the BCC Bravais lattice is defined by the set of translation vectors (A.2) and
(A.5) respectively. From these definitions, one can calculate the number of next neighbors.
All these next neighbors belong to the 1st shell, the second next neighbors belong to the 2nd

shell, etc. The table shows some properties of the FCC and BCC lattice.

FCC BCC

n d/S ≈ # Σ

0 0 1 1
1 1.8094 12 13
2 2.5589 6 19
3 3.1340 24 43
4 3.6188 12 55
5 4.0459 24 79
6 4.4321 8 87
7 4.7872 48 135
8 5.1178 6 141
9 5.4282 36 177

10 5.7218 24 201
11 6.0011 24 225
12 6.2679 24 249
13 6.5239 72 321
14 7.0078 48 369
15 7.2376 12 381
16 7.4603 48 429
17 7.6766 30 459
18 7.8870 72 531
19 8.0919 24 555
20 8.2917 48 603
21 8.4868 24 627
22 8.6776 48 675
23 8.8642 8 683
24 9.0470 84 767
25 9.2262 24 791
26 9.4019 96 887
27 9.5744 48 935
28 9.7439 24 959
29 10.0743 96 1055
30 10.2355 6 1061
31 10.3942 96 1157

n d/S ≈ # Σ

0 0 1 1
1 1.7589 8 9
2 2.0310 6 15
3 2.8722 12 27
4 3.3680 24 51
5 3.5178 8 59
6 4.0620 6 65
7 4.4264 24 89
8 4.5414 24 113
9 4.9749 24 137

10 5.2766 32 169
11 5.7445 12 181
12 6.0077 48 229
13 6.0929 30 259
14 6.4225 24 283
15 6.6590 24 307
16 6.7360 24 331
17 7.0355 8 339
18 7.2521 48 387
19 7.3228 24 411
20 7.5992 48 459
21 7.8001 72 531
22 8.1239 6 537
23 8.3122 24 561
24 8.3740 48 609
25 8.6167 36 645
26 8.7944 56 701
27 8.8528 24 725
28 9.0828 24 749
29 9.2516 72 821
30 9.3071 48 869
31 9.5262 24 893

The columns in the table show: (i) The number n of the shell. (ii) The distance d of the sites
belonging to that shell to the “center” site 0, divided by the Wigner-Seitz radius S. (iii) The
number of sites # in the nth shell. (iv) The number of sites Σ up to (including) shell n.
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C.7 Coefficients Ck
m1m2m3m4

The coefficients Ck
m1...4

are defined by Eq. (5.53) for `1 = `2 = `3 = `4 = 2 and form
a subset of the coefficients Ck

L1...4
. The Gaunt coefficients ck(L,L′), see Eq. (B.5), are

tabulated in Ref. [54]. From (5.54), it follows that the coefficients C k
m1...4

vanish unless
k = {0, 2, 4}. Next, from Eq. (B.6), we see that

Ckm1m2m3m4
= Ckm2m1m4m3

= Ckm4m3m2m1
= Ckm3m4m1m2

. (C.27)

The explicit values of the coefficients Ck
m1...4

follow. For k = 0 we simply have:

C0
m1...4

= δm1m4δm2m3 (C.28)

Next, for k = 2, one finds:

C2
mm′m′m =

1

49




4 −2 −4 −2 4
−2 1 2 1 −2
−4 2 4 2 −4
−2 1 2 1 −2

4 −2 −4 −2 4




(C.29)

C2
mm′mm′ =

1

49




4 6 4 0 0
6 1 1 6 0
4 1 4 1 4
0 6 1 1 6
0 0 4 6 4




(C.30)

For k = 4, one finds:

C4
mm′m′m =

1

441




1 −4 6 −4 1
−4 16 −24 16 −4

6 −24 36 −24 6
−4 16 −24 16 −4

1 −4 6 −4 1




(C.31)

C4
mm′mm′ =

1

441




1 5 15 35 70
5 16 30 40 35

15 30 36 30 15
35 40 30 16 5
70 35 15 5 1




(C.32)

The remaining Ck
m1...4

(which are not given by Eqs. (C.28) to (C.32) above) can be deter-
mined by Tab. C.1 in connection with Eq. (C.27).

From the above, we can evaluate various m-sums for fixed k which are shown in Tab. C.2.
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Ckm1...4
k {m1,m2,m3,m4}

−
√

36/49 2 {−2,+2,+1,−1}
− 6 2 {−2,+1, 0,−1}, {−1,+2,+1, 0}
− 1 2 {−1,+1, 0, 0}
+ 6 2 {−2, 0,−1,−1}, {0,+2,+1,+1}
+ 16 2 {−2,+2, 0, 0}
+ 24 2 {−2,+1,−1, 0}, {−1,+2, 0,+1}
−
√

1225/441 4 {−2,+2,−1,+1}
− 900 4 {−1,+1, 0, 0}
− 600 4 {−2,+1,−1, 0}, {−1,+2, 0,+1}
− 150 4 {−2, 0,−1,−1}, {0,+2,+1,+1}
− 25 4 {−2,+2,+1,−1}
+ 150 4 {−2,+1, 0,−1}, {−1,+2,+1, 0}
+ 225 4 {−2,+2, 0, 0}

Table C.1: Non-vanishing Ck
m1...4

which are not of the form Ck
mm′m′m or

Ckmm′mm′ . They can all be written in a form Ck
m1...4

= ±√
x/Dk, where x

and Dk are integers.

∑

mm′

Ckmm′m′m

∑

m6=m′

Ckmm′mm′

∑

m

Ckmmmm

k = 0 25 0 5

k = 2 0 8/7 2/7

k = 4 0 80/63 10/63

Table C.2: Various m-sums over coefficients Ck
m1...4

for fixed k.
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C.8 Variation of One-Particle Basis

For a second-quantized Hartree calculation, the Hartree basis is the right choice, as ex-
plained in section 6.3.1. However, this was not obvious to us when we started working on
this problem, and it is not clear whether this is the best choice for a Hartree-Fock calculation.
Therefore, we introduced a basis which depends on a parameter x through the Hamiltonian:

H ′(x) = −∇2 + (1 − x) v0 + x vH = H0 + x · “Hartree term”

This (auxiliary) Hamiltonian is used to construct the basis, as in section 5.2.3 example 3.
In essence, x controls the localization of the basis within the MT sphere. For small x, the
Wannier functions become more localized.7 As mentioned before, H ′(x = 0) = H0 is the
Hamiltonian in which the interaction among the valence electrons is artificially switched
off. Thus, it is very illuminating to look at the positions of the energy eigenvalues of H ′ as a
function of x, which can be seen for copper in Fig. C.3. As can clearly be seen, the Hartree
interaction term has a huge impact on the band structure. It is also interesting to take a look
at the Slater integrals (5.78) as a function of x (Fig. C.4). Here, we have also plotted the
averaged exchange interaction J as given by Eq. (5.80). It is not surprising that these are
monotonic decreasing functions, since for larger x, the radial wave functions become less
localized and thus the Slater integrals decrease.

Now, for a Hartree-Fock calculation, is not clear which basis (which will still be limited) is
best. Therefore, we have minimized the total effective energy (6.20), i.e. performed calcu-
lations for different x and regard the Hartree-Fock total energy as a function of x in order to
determine its minimal value. These calculations have shown that E(x) assumes it minimum
at x = 1 too8 (or least very close to x = 1) such that the Hartree basis is a good choice. It
is important to realize that when the Hartree-Fock total energy is evaluated as a function of
x, not only the basis depends on x, but also the term ΣHF

12,σ depends on x via the occupation
matrix Aσ12 and the Coulomb matrix W12,34.

7We should note that the localization of wave function can be expressed in terms of the so-called “inverse
participation number”, see Ref. [68].

8Similar as the solid curve in Fig. 2.1.
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Figure C.3: Position of bands as a function of x for Cu (see text).
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