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We have calculated the phonons and elastic constants of zirconium in the hexagonal-close-packed �hcp�
crystal structure using the Naval Research Laboratory �NRL� empirical tight-binding �TB� approach; the
tight-binding parameters are obtained by fitting to ab initio density-functional theory–generalized gradient
approximation energy bands and total energies for many different structures and volumes. We address diffi-
culties involved with the fitting procedure and give results for elastic constants, force constants, quasiharmonic
phonons, and specific heat. Because the predicted TB lattice constants at the zero-temperature energy minimum
are slightly different from those experimentally observed at room temperature, our TB model has an aniso-
tropic stress at the experimental lattice constants. We correct for these stresses in our calculations of the elastic
constants and sound speeds. Such techniques are also useful for calculating such properties for arbitrary c /a.
Our phonon calculations were done by the direct-force method in real space using calculated force constants;
these fall off quite slowly with distance, which causes problems with the calculated phonon spectrum due to
the slow convergence with increasing supercell size. This long-range behavior could play a large role in
determining the unusually anharmonic and anomalous physical properties of Zr. We show that similar, although
less severe, problems should arise for other metals. These considerations suggest that the direct-force method
for calculating phonons may be problematic for many metals.
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I. INTRODUCTION

Density-functional theory �DFT� calculations based on the
generalized gradient approximation �GGA� �Ref. 1� are an
effective tool for studying the properties of many systems at
zero temperature, ranging from bulk materials to clusters and
surfaces. With the availability of increasingly powerful com-
puters and efficient algorithms, it is now possible to perform
calculations for reasonably large systems. Despite these ad-
vances, the application of ab initio methods to the study of
finite-temperature thermodynamic effects such as thermal ex-
pansion and phase diagrams remains challenging, since such
effects involve lattice contributions to the free energy that
can be difficult to evaluate, especially if anharmonic contri-
butions are important. The goal of this work is to explore the
finite-temperature properties of a complicated electronic ma-
terial, Zr, by using a tight-binding approach to calculate the
phonon spectrum and related properties. Although first-
principles methods based on band-structure approaches have
been used to directly calculate the zero-temperature phonons
for some materials, we have instead focused on a tight-
binding approach in order to greatly speed up the calcula-
tions. We should like ultimately to be able to calculate phase
diagrams, strong anharmonicities, and other complex materi-
als properties that are still too computationally expensive
with direct full-potential electronic structure methods.

We have previously had some success in using tight-
binding methods on simpler materials �Cu metal2 and Ti
metal3�. The tight-binding method works extremely well for
Cu, with an accurate description of the phonon spectrum and
good agreement with experiment for many different thermo-
dynamic and physical properties. However, Cu has a nearly

filled d-electron shell, and for many properties more closely
resembles an s-p metal. Its phase diagram is very simple
�with no solid-solid phase transformations below 188 GPa at
room temperature�. As a second test of the tight-binding
methodology, we therefore tested Ti, which is just above Zr
in the periodic table. Ti has a partially filled d shell and has
a rich phase diagram. Although the predicted phonon spec-
trum for Ti was worse than for that of Cu, the hcp-to-� phase
transformation was well described by tight binding. As we
discuss below, Zr is an extremely challenging material with
many anomalies, which we believe is a far more rigorous
test, perhaps an extreme example, to see how accurately a
tight-binding approach can work. Although we have recently
shown that the methods described in this paper provide a
reasonably accurate prediction for some of the phase bound-
aries in Zr,4 there are also some important difficulties that
must be considered, which we explain in great detail in this
paper.

At normal pressure and room temperature, Zr has a
hexagonal-close-packed �hcp� crystal structure. For a com-
plete description, it is therefore useful to be able to calculate
both phonons and elastic constants for arbitrary c /a. This
requires calculations for a crystal structure with anisotropic
stress. In this paper we illustrate how to do this for Zr at the
experimental lattice constants, which represent a stressed
system in our tight-binding model. In addition, we show that
the force constants of Zr fall off slowly with distance, caus-
ing supercell convergence problems when direct-force
methods are used to calculate the phonon spectrum. It is
likely that these problems are related to the many anomalous
properties of Zr.

The thermodynamic properties of zirconium have been
the subject of many experimental and theoretical studies.5–9
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At room temperature and ambient pressure, the stable crys-
talline state of this early 4d transition metal is a hexagonal-
close-packed �hcp� structure �the � phase�. When the tem-
perature is raised, at zero pressure, Zr transforms
martensitically into the bcc structure �the � phase� at
1136 K, and then eventually melts out of the bcc phase.
When the pressure is increased at room temperature, a mar-
tensitic phase transformation into the � phase is observed
between 3.3 and 6.7 GPa.10 At even higher pressure, 30 GPa,
Zr exhibits a martensitic transformation into the bcc
structure.5

More important for this work, however, are the anomalous
phonon properties of Zr, which might be precursors to the
various martensitic phase transformations.11 At high tem-
peratures, the bcc phonons show a large strongly
temperature-dependent low-energy dip in the high-symmetry
longitudinal phonon branch L �� ,� ,�� for �=2/3, which is
related to the � phase transformation. The entire transverse
�T1� phonon branch from � out to the N point of the Bril-
louin zone is also anomalously low, which is related to the
transformation into the hcp structure. In the hcp crystal struc-
ture, the zone center of the �001� LO branch softens appre-
ciably, and exhibits a dip at low temperatures,7 which may be
related to the superconducting transition. The hcp elastic
constants also have a marked anisotropy in the temperature
dependence of the shear moduli.6 These phonon properties
are a sign of strong anharmonicity and indicate the need for
better models for the atomic forces in Zr.

As a first step towards calculating these anharmonicities,
we have used the NRL tight-binding �TB� approach12 to cal-
culate the zero-temperature phonons within the quasihar-
monic approximation for the hcp structure, as well as the
specific heat at constant volume. Our approach is first-
principles in the sense that the tight-binding parameters are
based on ab initio band-structure calculations and do not
depend upon experimental data. Finite-temperature results
are determined by thermally populating the quasiharmonic
phonons, and calculating the free energy from these. Since
the quasiharmonic phonons are calculated at zero tempera-
ture, in this paper we cannot, unfortunately, address the tem-
perature dependence of the phonons themselves, and only
limited temperature-dependent anharmonic effects. However,
the long-term hope is that tight-binding methods will be suf-
ficiently fast, flexible, and accurate to ultimately enable such
studies.

This paper is organized as follows. In Sec. II, we explain
the tight-binding approach that we use in this paper, and
discuss how to determine the necessary parameters. In Sec.
III, we present calculations of the Zr phonons from the tight-
binding calculations and compare with experiment. Because
sound velocities are equivalent to the large wavelength
�small q� limit of the phonon spectrum, and depend only on
the elastic constants, in Sec. IV we provide calculations for
the elastic constants and in Sec. V for the sound velocities.
We also explain the effects of stress on these properties,
since the lattice constants and c /a for the tight-binding pre-
dictions for equilibrated Zr are slightly different from the
experimental values, and hence calculations at the experi-
mental lattice constants require theoretical calculations for Zr
under the small applied stress that is needed to shift the Zr

lattice constants away from their theoretical minimum. In
Sec. VI we discuss a more explicit relationship �Born-
Huang� between the dynamical phonon matrix and the elastic
constants, and in Sec. VII the anomalously slow decay of the
force constants with distance, which we believe is respon-
sible for many of the unusual properties of Zr. A comparison
with the experimental specific heat is given in Sec. VIII.
Finally, our results are summarized in Sec. IX.

II. TIGHT-BINDING APPROACH AND FITTING
PROCEDURE

In this work, we use the Naval Research Laboratory
�NRL� tight-binding approach.12 This method is designed to
reproduce ab initio DFT calculations by fitting the model
parameters to DFT band structures and total energies. Being
a parametrized version of the DFT calculations, the method
is computationally orders of magnitude faster than DFT it-
self. The ultimate goal is to find a tight-binding parametriza-
tion that has the accuracy and transferability of the ab initio
calculations without the huge computational expense.

The total DFT energy is given by �i= �k ,n��

E�n� = �
i

f��i − ���i + F�n� , �1�

i.e., a sum over the energy eigenvalues �i that are weighted
with the Fermi function f�z�=1/ �1+e�z� plus a remaining
density functional F�n�, which contains �i� the ion-ion inter-
action energy, �ii� parts of the Hartree and exchange energy
not yet included in the sum, and �iii� corrections for double
counting. In the NRL-TB model, the Kohn-Sham potential
�as well as the eigenvalues �i� are shifted by V0=F�n� /Ne,
such that E�n�=�i f��i�−����i�. The shifted �i� are considered
functions of only the crystal structure and the volume. By
shifting the DFT energy eigenvalues �in our case, from
WIEN2K calculations� in this way, we guarantee that when we
fit the tight-binding bands to these energy eigenvalues we
will reproduce the DFT total energies when summing over
these eigenvalues. For the nonorthogonal tight-binding
model, we use a basis consisting of s, p, and d orbitals. The
NRL parametrization requires 73 parameters to describe the
distance dependence of all of the s-p-d Hamiltonian and
overlap matrix elements,2–4,12 upon which the accuracy and
transferability of the tight-binding method depends.

The database used for fitting the tight-binding parameters
of zirconium was calculated from the energy bands and total
energies of the WIEN2K full-potential LAPW codes.13 The
GGA �Ref. 1� potential was used to include the effects of
exchange and correlation. To fit the 73 parameters to the
DFT database, we used a standard nonlinear least-squares
algorithm,14 the Levenberg-Marquardt method. For the cubic
structures, the symmetry of special k points in the first Bril-
louin zone is taken into account.15

Since fitting is a highly nonlinear process, it is easy to get
trapped in false minima and to generate bad fits. For this
reason we describe our fitting procedure, since it may help
others find good tight-binding fits. Initially, we started by
only fitting to the special k points of three cubic crystal
structures �bcc, fcc, and simple cubic�, at nine volumes in the
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range from 15.7 to 30.7 Å3/atom. It is important not to in-
clude too much information into the database when starting a
fit. The symmetrized energy bands constrain the parametri-
zation and push it towards the physically meaningful part of
parameter space.15 This is important since the optimization
process easily gets trapped in a large number of local minima
of the vast 73-dimensional parameter space.

Next, we added other crystal structures that seemed im-
portant to us, namely, the hcp, diamond, and � structure, into
the database, still only fitting to band energies �over the same
range of volumes�. It is important not to “overwhelm” the
fitting procedure with too many crystal structures and con-
straints at once. Adding a few crystal structures at a time
allows the procedure to slowly move the fit into a better part
of parameter space. The tight-binding fit at this stage is
shown in Figs. 1 and 2. Figure 1 shows a comparison of the
DFT and the tight-binding energy bands for the bcc structure
at the experimental equilibrium volume. This comparison is
very representative for other crystal structures, and it shows
that the tight-binding energy bands are in remarkably good
agreement with DFT. At other volumes the comparison is
only slightly worse. However, when looking at the total en-
ergies in Fig. 2, the agreement is less good. This mismatch
might be surprising since the total energies are just a sum of
the band energies. However, the errors in the structural en-
ergies in Fig. 2 are on the order of a few tenths of eV,
whereas Fig. 1 shows the band-structure energy eigenvalues
on a scale that is the order of 10 eV. This scale, which is
necessary to show the full energy bands, can be slightly mis-
leading with respect to the size of the errors. The errors in
the energy bands can be as large as a tenth of an eV, and
these errors can add up when summing over all the occupied
bands throughout the Brillouin zone. Unfortunately, even af-
ter many attempts, we were not able to increase the accuracy
of the tight-binding fit by only fitting to energy bands.

To increase the accuracy of the total energies, we then
included the total energies themselves into the fitting DFT

database, with weights between 1000 and 5000 larger than
the weights of the individual energy eigenvalues. We also
included the following additional crystal structures into our
database �these are related to relevant frozen phonons and
elastic-constant deformations�: �i� the hexagonal crystal
structure with the c /a ratios of 0.8 and 2.4, and �ii� an hcp
frozen phonon that corresponds to the longitudinal phonon
frequency at the � point. Figures 3 and 4 show the compari-
son of DFT with the new fit to the tight-binding energy bands
and total energies. The tight-binding total energies shown in
Fig. 4 are now much closer to DFT. However, when looking
at Fig. 3, we see that the tight-binding energy-band fit is
severely degraded. This is problematic since the energy
bands contain all of the important physics upon which the
tight-binding method is based. If they become less accurate,
there is a danger that the method will lose its physical mean-
ing, and hence also its transferability, i.e., the ability of the
method to correctly predict band and total energies for struc-
tures that are not included in the database. Nonetheless, since
almost all materials and thermodynamic properties depend so
heavily on the total energies, we were forced to make this
trade-off and the tight-binding fit of Fig. 4 that heavily
weights the total energies was used for calculating almost all
materials and thermodynamic properties in this paper. To im-
prove this situation would require either better and more
flexible formulations of the tight-binding parametrization

FIG. 1. Comparison of energy eigenvalues for the bcc crystal
structure. The lines are the DFT results, and the dots are calculated
from the fitted TB model in which only energy bands were fitted.
All energies are relative to the respective Fermi energy �the zero of
energy� for each method.

FIG. 2. Comparison of total energies for the crystal structures
that are included in the tight-binding fitting database. Each total
energy is normalized per atom to make it possible to compare struc-
tures with different numbers of atoms in the unit cell. The lines are
the DFT results, where we fit the energies for specific volumes to
the parametrization of Ref. 35, and then plot this curve, which is a
highly accurate representation of the DFT energies. The dots are
calculated from the TB model in which only energy bands were
fitted. Since the energy is only determined to an arbitrary constant
�only relative energies are meaningful�, we have shifted the zero of
energy to make the numbers relatively small and positive.
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�perhaps embedded-atom-like terms for the nearest-neighbor
matrix elements� or finding a more physical fit than any of
the large number of nonphysical minima in which one can
easily get trapped. Ideally, both the tight-binding energy
bands as well as the total energies should agree extremely
well with first-principles GGA-DFT band-structure calcula-
tions.

III. PHONONS

In standard textbooks �see, e.g., Chap. 22 in Ref. 16� pho-
non frequencies are derived from an expansion of the total
energy of a solid as a function of atomic displacements. In
the literature this method is called the direct-force
method,17,18 and relies on evaluating the forces on all atoms
�l ,k�, i.e., the kth atom in lth cell, in which one atom �0,k��
has been displaced by a small amount away from its equilib-
rium position. Since there is an explicit expansion of the total
energy to second order in atomic displacements, some care
must be taken to make sure that these displacements are suf-
ficiently small so that the expansion is accurate and does not
implicitly include higher-order terms. In this paper we use
the quasiharmonic approximation, whereby the force con-
stants are calculated as a function of volume �i.e., the total
energy is expanded as a function of displacement around the
atomic positions of the perfect lattice, whose lattice constants
change as a function of volume�.

In the quasiharmonic approximation, the force constants
are given by

����0k�,lk� = −
�F��l,k�
�u��0,k��

� −
F��l,k�
u��0,k��

, �2�

i.e., the ratio of the negative force on atom �l ,k� in the �
direction to the displacement of atom �0,k�� in the � direc-

tion. In the TB model, the actual calculation of the forces in
Eq. �2� is achieved by evaluating analytic derivatives of the
Hamiltonian and overlap matrix elements and the on-site
terms.19 Once the force constants have been calculated, the
phonons are evaluated by diagonalizing the Fourier trans-
form of the real-space dynamical matrix,

M���q,kk�� = �
l�

����0k,l�k��exp�iq · �x�l�,k�� − x�0,k��� ,

�3�

where q is the wave vector and x�l ,k� is the atom position.
This formula is correct for an infinitely large system.

However, because our tight-binding calculations are done
with periodic boundary conditions, we are forced to evaluate
this equation within a supercell. Because of the computa-
tional limitations of diagonalizing a large number of atoms,
our supercell size is limited. In this case, if the forces do not
vanish inside the supercell, errors due to �super�cell-cell in-
teractions are introduced.18 Also, the supercell, which con-
sists of replicas of the primitive or conventional unit cell,
does in general not have the right crystal symmetry. There-
fore cell-cell interactions will contribute force constants that
violate symmetry rules.

Since our goal is to calculate the best approximation pos-
sible to the infinite crystal limit for the real-space dynamical

FIG. 4. Comparison of total energies for crystal structures in-
cluded in the tight-binding fitting database. Each total energy is
normalized per atom to make it possible to compare structures with
different numbers of atoms in the unit cell. The lines are the DFT
results, and the dots are calculated from the TB model in which
energy bands and total energies were fitted. This fit is used for the
supercell calculations and phonons. Since the energy is only deter-
mined to an arbitrary constant �only relative energies are meaning-
ful�, we shifted the zero of energy to make the numbers relatively
small and positive.

FIG. 3. Comparison of energy eigenvalues for the bcc crystal
structure. The lines are the DFT results �using the parameterization
from Ref. 35�, and the dots are calculated from the TB model in
which energy bands and total energies were fitted. All energies are
relative to the respective Fermi energy �the zero of energy� for each
method.

SCHNELL et al. PHYSICAL REVIEW B 74, 054104 �2006�

054104-4



matrix, we have to apply corrections to our periodic super-
cell results to obtain this. The most important correction is to
first restore the correct symmetry. If we consider the effect of
symmetry operators on the dynamical matrix, then for the

space-group element Ŝm, where S is its proper or improper
rotation and v is its translation, we have that

Ŝmx�l,k� = x�L,K� = Smx�l,k� + vm. �4�

Since the total energy of a system cannot change under
a symmetry operation, if this symmetry is imposed on the
system and one compares like terms in the expansion, the
following symmetry relation is obtained �see pp. 28–29 of
Ref. 20�:

����lk,l�k�� = Sm����lk,l�k��Sm
T , �5�

where � is a 3	3 matrix with elements ��� �see Ref. 20�
and the superscript T implies transposition. Since Eq. �5� will
no longer hold when cell-cell interactions are present, it is
necessary to restore this symmetry so that our calculated
phonons will have the correct symmetry, such that the eigen-
values of Eq. �3� are unchanged by q→Sq. We achieve this
by applying all symmetry operations, and then averaging
over these within Eq. �5�. This involves replacing each force
constant

����0k,l�k��exp�iq · �x�l�,k�� − x�0,k��� �6�

in Eq. �3� by

1

N
�
m=1

N

Sm����0k,l�k��Sm
T exp�iq · Sm�x�l�,k�� − x�0,k��� ,

�7�

where N is the number of space-group elements. In our cal-
culation of the dynamical matrix, Eq. �3�, we then sum over
all primitive cells in the supercell. The hope is that the cal-
culations will converge for a sufficiently large supercell size.

We should note that this scheme differs somewhat from
the original direct-force method,18 where the dynamical ma-
trix was summed over shells of nearest-neighbor force con-
stants, and was truncated after the fifth shell for the alkali
metals. In our calculations, the sum over shells of nearest-
neighbor force constants did not converge, and truncating
this sum over shells led to a violation of the sum rule,

�
l�k�

����0k,l�k�� = 0. �8�

When this equation does not hold, the acoustical branches of
the phonon spectrum do not go to zero as q goes to zero, as
they should. Using the symmetrized form of the force con-
stants and summing over all primitive cells in the supercell
restored this sum rule in our calculations.

Using this scheme, we have calculated the phonon ener-
gies from force constants evaluated from three different su-
percells, as shown in Fig. 5. These test calculations were
done at the theoretical equilibrium. Here, the evaluation of
the dynamical matrix, Eq. �3�, included only atoms in primi-
tive cells included in the supercell. Along each primitive vec-
tor, the primitive cells of the supercell were chosen sym-

metrically around the origin. In cases where a supercell has
an even number of primitive cells along one direction, one
cell was duplicated �with adjusted weight� and transposed by
the corresponding basis vector of the supercell, such that
primitive cells are symmetrical around the origin. It should
be emphasized that the phonons depend on very small differ-
ences in the total energy of the tight-binding calculations.

In this figure, the phonon energies are reasonably con-
verged with respect to the supercell size. The effect of larger
supercell size does not seem to change the overall spectrum
by very much, but does appear to introduce some oscillating
behavior in the phonon dispersion curves that is unphysical.
These oscillations are probably errors introduced by adding
additional Fourier components into the phonon spectrum; it
is likely that these are incorrectly calculated due to supercell-
supercell interactions, and the associated necessity of apply-
ing the symmetry operations to the force constants �cf. Eq.
�5��. Hence we believe that our most reliable spectrum is
actually the 3	3	3, which does not have these spurious
oscillations. Note that the largest differences in the overall
phonon density of states �right-hand side of Fig. 5� is for the
highest phonon frequencies.

In Fig. 6 we show a comparison of this 3	3	3 supercell
calculation with experimental phonons at room temperature.7

The overall shape of the theoretically calculated spectrum
qualitatively agrees with the experimental spectrum. This
rough agreement with experiment suggests that we are pick-
ing up the dominant part of the dynamical matrix with the
short-range part of the force constants; it is the last 20% that
is hard to converge due to the long-range forces. The two
main differences between the theoretical and experimental
spectrum are �i� the overall theoretical dispersion curves are
on average about 20% too low, and �ii� the lowest acoustic-
phonon branches are too soft. Although our calculations are
done for zero temperature, the experimental temperature
dependence7 of the phonon dispersion curves between 5.5
and 1007 K suggest that our errors are larger than differences
between the 5.5-K and room-temperature spectrum �some
modes increase and others decrease as a function of tempera-
ture�. Unfortunately, the 5.5-K published data are very
sparse, which is why we plotted the experimental room-
temperature curves in Fig. 6.

FIG. 5. The hcp phonon energy band structure obtained from
3	3	3 �solid�, 4	4	4 �dashed�, and 5	5	4 �dotted�
supercells.
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When compared with previous tight-binding calculations
for Cu metal2 and Ti metal,3 the agreement of the phonon
spectrum with experiment is far worse for Zr. We believe that
the largest errors in the phonon frequencies are attributable
to the anomalously long-range behavior of the force con-
stants, which we discuss in greater detail in Sec. VII. The
long-range behavior of Zr is far more severe than for Cu or
Ti, which is likely a very large reason for the greater discrep-
ancies with experiment. It should be noted, however, that
even for Cu and Ti, there appears to be a slight systematic
underestimate of the highest phonon frequencies, which may
also indicate some smaller previously unsuspected conver-
gence problems for these systems as well. Finally, the lowest
branches of the acoustic-phonon spectrum for Cu and Ti are
in good agreement with experiment while that for Zr is poor.
Since the small wave-vector behavior of the phonons is di-
rectly proportional to the sound velocities of the crystal in
different directions, which only depend on the elastic con-
stants, we have therefore calculated the elastic constants and
sound speeds for Zr with our tight-binding model, and
present these results in the next two sections.

Despite these problems, thermodynamic properties �par-
ticularly at higher temperatures when many phonon modes
are sampled� often average over the phonon spectrum and
are less sensitive to the level of errors we have presented
above. We have recently been able to use the computational
efficiency of our TB model to provide a reasonably accurate
prediction4 for the hcp-to-� and the �-to-bcc Zr phase-
transition phase boundaries over a moderate temperature
range. However, this paper is the first time we have provided
the full details and problems associated with the tight-
binding fits and the method used for calculating the phonon
frequencies.

IV. ELASTIC CONSTANTS

As discussed above, the elastic constants determine the
sound speeds in different directions in a crystal, which, in

turn, give the slope �� /q� of phonon-dispersion curves for
small wave vectors �q�. The elastic constants therefore serve
as an important check on the quality of phonon calculations
as well as being themselves an important physical parameter
for a material.

Usually, the treatment of elasticity is given for a crystal
free of stress. Since we are interested in calculations for hex-
agonal crystals for arbitrary c /a, this situation will not hold
for us. We therefore write down the general case first and
then specialize to stress-free crystals.

A linear deformation of the lattice is expressed by multi-
plying the Bravais matrix a, which contains the three Bravais
vectors in its columns, with a deformation matrix

e = 	1 + uxx uxy uxz

uyx 1 + uyy uyz

uzx uzy 1 + uzz

 . �9�

The Taylor expansion of the total-energy density due to the
deformation has the form

E�e� = E�0� + �
��


��u�� + 1
2 �

����

S��,��u��u�� + ¯ ,

�10�

where S��,�� is symmetric in ��� ,���, i.e.,

S��,�� = S��,��. �11�

We assume the stress matrix 
�� to be present in the un-
strained material, i.e., even before applying the deformation
matrix. Rigidly rotating the strained crystal must leave
the energy density invariant. As shown in Ref. 21, this
invariance requires


�� = 
��, �12�

and


���� − 
���� + S��,�� − S��,�� = 0. �13�

In order to evaluate the stress matrix 
�� and Huang’s
coefficients S��,��, we first apply strain matrices of the form

u�� = ����u , �14�

i.e., only the strain component u�� equals u, all other strain
components equal zero. There are nine matrices of this
form, corresponding to the nine different choices of � and �.
Inserting Eq. �14� into Eq. �10� gives

E�u� = E�0� + 
��u + 1
2S��,��u2. �15�

Calculating E�u� for all choices of � and �, and estimating
the first and second derivatives from polynomial fits, we can
calculate all the stresses 
�� and Huang’s coefficients of the
form S��,�� directly. Next, we apply strain matrices of the
form

u�� = ����� − �����u ��,� � �,�� , �16�

i.e., only the two strain components u�� and u�� are nonzero
and opposite in sign. There are 36 strain matrices of this
form, which corresponds to selecting two out of nine ele-
ments. Inserting Eq. �16� into Eq. �10� gives

FIG. 6. The hcp phonon energy band structure. The solid lines
show the phonon frequencies from our tight-binding calculation,
using the 3	3	3 supercell, the dots and dashed lines show the
experimental phonon frequencies from neutron scattering at 295 K
�Ref. 7�.
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E�u� = E�0� + �
�� − 
���u + � 1
2S��,�� − S��,�� + 1

2S��,���u2,

�17�

where we have used Eq. �11�. Since we have already evalu-
ated the terms S��,��, we are now in a position to calculate
all the coefficients S��,�� from polynomial fits. It is impor-
tant to note that the procedure outlined above does not as-
sume the crystal to be stress free, nor does it assume the
symmetry of any crystal class.

Since the tight-binding method is computationally inex-
pensive, we have calculated all the 45 energy-strain curves
for both the experimental �V=23.34 Å3/atom, c /a=1.593�
and theoretical �V=23.58 Å3/atom, c /a=1.625� equilibrium.
For each type of strain, we have chosen five values for u of
±0.01, ±0.005, and zero. We have also carefully checked the
convergence of S��,�� as a function of the number of k points
used, and found that 403 k points are sufficient to converge
the coefficients to an accuracy of 0.25 GPa.

While the coefficients S��,�� are conveniently determined
from Eq. �10�, they lack symmetry in �� ,�� and �� ,��.
Only if the stress matrices 
�� vanish does Eq. �13� reduce
to S��,��=S��,��. Using Eq. �11�, we see that both pairs of
indices are then symmetric. This allows the use of the cus-
tomary simplifying Voigt notation that contracts pairs of in-
dices into single indices,20,22 i.e., xx→1, yy→2, zz→3,
�yz ,zy�→4, �xz ,zx�→5, and �xy ,yx�→6.

It is therefore convenient to introduce elastic constants
C��,�� which have the full symmetry

C��,�� = C��,�� = C��,�� = C��,��. �18�

By means of Eq. �13�, we see that this is achieved by
defining

C��,�� = S��,�� − 
����. �19�

In fact, these elastic constants C��,�� are obtained by ex-
panding the energy density in terms of finite strain param-
eters ���= 1

2 �u��+u��+��u��u��� instead of the deformation
parameters u�� themselves.23

We are now in a position to state our results for both the
experimental and theoretical equilibrium in terms of the elas-
tic constants Cij using the Voigt notation. These results reveal
relations among the elastic constants Cij, which are specific
for every crystal class �see, e.g., Table 9 in Ref. 22�. Since
our concern is a hexagonal crystal, only the five independent
elastic constants C11, C12, C13, C33, and C44 are shown
in Table I. The columns labeled TB and Expt. in Table I
show the results of the tight-binding calculations and experi-
mental results for the elastic constants for the hcp structure.
For the tight-binding calculation performed at the experi-
mental equilibrium volume, we find an anisotropic stress of

xx=
yy =−0.6 GPa and 
zz=−2.0 GPa. For the tight-binding
calculation performed at the theoretical equilibrium, we find
the 
’s to be vanishing within numerical error, as one would
expect. The column labeled DFT was taken from the first-
principles calculations given in Ref. 24. The best theoretical
calculations �DFT� give C11, C12, C13, and C33 within
8–13 % of experiment; however, C44 is 24% too small. The
direct TB calculations �labeled TB� for C11, C12, C13, and C33
are within 6–10 % of experiment; however, C44 is much too
small, being about 1/4 of the experimental value. Thus for
four of the five elastic constants tight binding is as accurate
as first-principles DFT calculations. The main discrepancy is
for C44, which is also problematic for DFT.

In Table I we also present results for the elastic constants
that depend on long-wavelength expansions of the phonon

TABLE I. Elastic constants in GPa for the hcp structure. The experimental values in the first column
�Expt.� are from Ref. 36. The second column shows DFT results from Ref. 24 at their theoretical equilibrium.
Note that these calculations were done for conventional LDA and not for GGA; LDA tends to overbind
transition metals and the volume is reduced when compared to experiment. This causes about a 20% over-
estimate for the bulk modulus �Ref. 24� and one expects the other LDA elastic constants to similarly be
somewhat too large. The remaining columns show the elastic constants calculated from the TB model. In the
third and fourth columns �TB-E, TB-T�, the elastic constants were evaluated by direct distortion of the unit
cell �cf. Sec. IV� at the experimental and theoretical equilibrium volumes, respectively. Note that the theo-
retical equilibrium volume minimized the total energy and does not contain any zero-point motion effects.
The last three columns show the elastic constants evaluated through the Born and Huang relations at theo-
retical equilibrium for different supercell sizes, Sec. VI.

Expt. DFT TB-E TB-T 3	3	3 4	4	4 5	5	4

C11 144 156 133 142 120 121 130

C12 74 65 80 71 61 18 −8

C13 67 76 73 71 48 32 65

C33 166 182 148 147 169 164 152

C44 33 25 7 8 19 44 25


xx, 
yy 0 −0.6 0 3.5 14.5 1.0


zz 0 −2.0 0 −7.0 −29.0 −2.0

V /Å3 23.34 22.19 23.34 23.58 23.58 23.58 23.58

c /a 1.593 1.583 1.593 1.625 1.625 1.625 1.625
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dynamical matrix �Born and Huang relations�, which will be
discussed further in Sec. VI. The TB calculations using the
Born and Huang relations for the different supercell sizes
fluctuate and have clearly not converged. The implications of
these errors for the phonon calculations will be presented in
Sec. VI. It should be noted that the phonon spectrum has
some temperature dependence,7 which is also true for the
elastic constants. The experimental elastic constants were de-
termined at room temperature.

V. SOUND VELOCITIES

The sound speeds along any direction in the arbitrarily
stressed crystal can be calculated from the elastic equations
of motion,23

�
�2u�

�t2 = �
���

S��,��

�2u�

�x� � x�

, �20�

where � is the density. This equation describes the movement
of elastic disturbances through a homogeneous continuous
media. As usual, a plane-wave solution for Eq. �20� is
assumed and requires solving the eigenvalue problem

��2�q�u�q� = A�q�u�q� , �21�

where the real symmetric matrix A is given by

A���q� = �
��

S��,��q�q�. �22�

Notice that since A�q� is quadratic in q, �2�q� will be
as well, and therefore ��q� will be linear in q, i.e.,
��q�=c�q̂�q where c�q̂� are the sound velocities of the
acoustic waves in the direction q̂=q /q.

If the crystal is unstressed, from Eq. �19� one obtains
C��,��=S��,��. Using the Voigt notation, one can show from
the symmetry among the constants Cij for a hexagonal
media22 that Eq. �22� becomes

Axx = C11qx
2 + �C11 − C12�/2qy

2 + C44qz
2,

Ayy = �C11 − C12�/2qx
2 + C11qy

2 + C44qz
2,

Azz = C44�qx
2 + qy

2� + C33qz
2,

Ayz = �C13 + C44�qyqz,

Axz = �C13 + C44�qzqx,

Axy = �C11 + C12�/2qxqy . �23�

An interesting consequence is that the three velocities along
any direction in the xy plane, i.e., q̂x=cos���, q̂y =sin���, and
q̂z=0, are independent of the angle � for hexagonal symme-
try. In this plane,

c1 = �C11/�, c2 = ��C11 − C12�/2�, c3 = �C44/� .

�24�

Along the z direction �q̂z=1, q̂x= q̂y =0�, one obtains

c1,2 = �C44/�, c3 = �C33/� . �25�

Especially if the sound velocities depend on differences of
elastic constants, sound speeds can be very sensitive to small
changes in the elastic constants. Since the sound speeds cor-
respond to the small-wavelength behavior of the acoustic
phonons, a good prediction of the elastic constants from the
TB model is important for the model to correctly calculate
low-q phonons.

In Table II we present our calculations for the sound
speeds. The experimental, DFT, and TB-T sound speeds were
calculated from the elastic constants presented in Table I and
Eqs. �24� and �25�. The TB-E and supercell calculations used
the relevant S��,�� matrices and diagonalized the sound-
speed equations �21� and �22�. The effects of the anoma-
lously low value for C44 in the tight-binding calculations lead
to very low sounds for c1 in the x-y plane and c1,2 in the z
direction, and, in turn, explain the soft lowest acoustic
branch in the theoretically calculated phonon spectrum �see
Fig. 6�. The other sound speeds, which depend more on the
other elastic constants, are in relatively good agreement with
experiment. The supercell calculations are derived from the
phonon force constants, and are discussed in Sec. VI.

TABLE II. Calculated sound speeds in km/s for the hcp structure. The first panel shows the sound speeds
in the xy plane �this includes the � to K and the � to M directions in the phonon dispersion curves�, and the
second panel shows the sound speeds in the z direction �this is the � to A direction�. For the geometries that
we used, all sound speeds in the xy plane are independent of direction. The column headings are the same as
in Table I. The sound speeds were calculated from either the relevant elastic constants or the S��,�� matrices.

Expt. DFT TB-E TB-T 3	3	3 4	4	4 5	5	4

xy c1 2.25 1.96 0.98 1.13 1.87 3.02 2.00

xy c2 2.32 2.65 2.00 2.37 2.28 3.20 3.30

xy c3 4.71 4.90 4.52 4.69 4.39 4.60 4.51

z c1,2 2.25 1.96 0.86 1.12 1.36 1.54 1.88

z c3 5.06 5.30 4.75 4.78 5.02 4.58 4.84

V /Å3 23.34 22.19 23.34 23.58 23.58 23.58 23.58

c /a 1.593 1.583 1.593 1.625 1.625 1.625 1.625
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VI. BORN AND HUANG RELATIONS

Born and Huang25 demonstrated the connection between
the elastic constants and the force constants for a crystal in
equilibrium. These relations are obtained by expanding Eq.
�3� in the long-wavelength limit �small q�, and comparing
the three acoustic branches to the solutions of the elastic
equations that involve elastic restoring vibrations and that
are governed by the elastic constants. For the case of a crys-
tal with inversion symmetry the relations assume a simpler
form. For small �q�, the dynamical matrix can then be ex-
panded as �see also Refs. 20 and 21�

M�q� = M�0� +
1

2�
��

M��
�2�q�q� + ¯ . �26�

The elements of the matrices are given by

M��
�0��kk�� = �

l�

����0k,l�k�� �27�

and

M��,��
�2� �kk�� = − �

l�

����0k,l�k��x��0k,l�k��x��0k,l�k�� ,

�28�

where

x��0k,l�k�� = x��0,k� − x��l�,k�� . �29�

The elastic constants can then be calculated from

C��,�� = ���,��� + ���,��� − ���,��� , �30�

where the square brackets are defined as �v is the volume of
the primitive cell�

���,��� =
1

2v�
kk�

M��,��
�2� �kk�� . �31�

As noted above, these equations are only valid for a crystal
in equilibrium. They can, however, be generalized to the case
of anisotropic stresses. Huang21 has made this generalization,
and it turns out that only the average pressure p is not ex-
pressible in the general theory. Huang’s coefficients, which
are defined by

S��,�� = ���,��� + ���,��� − ���,��� + x��,��, �32�

and are the same which appear in the elastic equations of
motion �20�, introduce the coefficients x��,��. These new co-
efficients x��,��, as well as the stresses 
��, are completely
expressible in terms of the square brackets and the average
pressure. Since these relations are somewhat lengthy, we re-
fer the interested reader to Ref. 21. Again, S��,�� will �in
general� lack the symmetry �18� but we can use Eq. �19� to
state our results using the Voigt notation. Therefore it is pos-
sible to evaluate elastic constants by two completely inde-
pendent methods: �i� by the use of the above Huang relations
from the force constants, and �ii� by directly applying vari-
ous strains to the crystal �Sec. IV�.

For the different supercells, which were used to create
Fig. 5, we applied the Born and Huang relations and calcu-

lated the elastic constants. These results are shown in Table I.
Even though the phonons themselves �Fig. 5� are reasonably
converged, the resulting elastic constants are not converged.
These elastic constants should converge to the entries in col-
umn TB-T. The Born-Huang relations emphasize the long-
range force constants, since Eq. �28� is quadratic in distance.
In order to converge the elastic constants that are obtained
from Eq. �30�, the force constants need to decay more rap-
idly than x−2 with distance. The poor convergence of the
elastic constants, obtained from the different supercells in
Table I, are an indication of long-ranged force constants. In
addition, even though the supercell calculations were carried
out at the theoretical equilibrium volume, we see that the
stresses obtained from the force constants are not vanishing.
They appear to be getting smaller with increasing supercell
size, however. We will discuss this issue in the following
section.

The sound speeds that are calculated from the Born and
Huang relations are shown in Table II. These give the slope
of the phonon dispersion curves at small q. The deviation
from the experimental phonons due to differences in these
sound speeds with respect to experiment for the 3	3	3
supercell can clearly be seen in the small-q differences seen
in Fig. 6. For a consistent theory, the sound speeds for the
supercells should converge to those in column TB-T. The
Born and Huang relations are a sensitive test of the supercell
convergence of phonons calculated by the direct-force
method.

VII. LONG-RANGE FORCES

In order to understand the range of the force constants at
a large distance, we have chosen a 1	1	25 hcp supercell
that stretches along the z direction. By displacing one atom
in this supercell in the z direction, we actually displace a
layer of atoms. The resulting force on every atom is called a
planar force, which is, however, proportional to the force that
would result if only one atom in the plane were displaced.26

Figure 7 shows these forces and, from linear regression, we
find the decay to be approximately z−1.48. To verify this result
and to test whether it was associated with the TB model or
was an inherent feature in the physics of this material, we
have also done the same calculation using the VASP first-
principles code27 and employing GGA.1 The result of this
calculation is also shown in Fig. 7. Here, we find the decay
to be even longer ranged, with a falloff of approximately
z−0.94.

This explains why the elastic constants, which are ob-
tained from the Born and Huang relations, Eq. �30�, could
not be converged. Many applications of this supercell ap-
proach have been applied to semiconductors, were the force
constants are short ranged17,26,28 �exponential� due to a finite-
energy gap. In order to verify if the long-range problem is
unique to zirconium, we have performed this same calcula-
tion for some other available tight-binding fits. Table III
summarizes these results. We have assumed experimental
volume and c /a ratios16 for hcp Ti, Zr, and Hf. The fcc
materials Al and Cu where also treated as hcp with an “ideal”
c /a=�8/3 ratio, corresponding only to a staking fault. If the
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distance dependence does not fall off faster than z−2, the
Born-Huang relations will not converge. Although this ap-
pears to be the case for Zr, it should be noted that there is a
great deal of scatter and numerical noise in the Zr distance
dependence and it is probably very likely that Zr will even-
tually converge if an extremely large supercell is used.

With respect to zirconium, we found that increasing the
size of the supercell had the largest effect on the acoustic
branches near the � point. This is not surprising since in-
creasing the size of the supercell mostly affects the long-
range force constants, due to cell-cell interactions. In view of
Eq. �3�, the long-range force constants correspond to the
small q limit, which is also the limit in which Born and
Huang relations are derived. Thus increasing the supercell
size has a large impact on the elastic constants, and they
could not be converged.

VIII. HEAT CAPACITY

From the phonon density of states g���, we can calculate
the lattice contribution to the specific heat29 as

Cv
�l� = k

0

� exp�� � ��
�exp�� � �� − 1�2 �� � ��g���d� . �33�

However, to compare to experiment, it is typical to replot the
specific-heat data as an effective Debye temperature ��D� as
a function of temperature. This conversion is done inverting
the equation16

Cv
�l� = 9nkB� T

�D
�3

0

�D/T x4exdx

�ex − 1�2 �34�

in order to determine �D�T�, where n is the number of atoms
per unit volume. A comparison of the theoretical lattice spe-
cific heat with the experimental specific heat30,31 in terms of
the Debye temperature is shown in Fig. 8. The main differ-
ence between the two is that the tight-binding Debye tem-
peratures are about 10% below the experimental values. This
is due to a thermal population of the lower acoustic branches,
which are depressed in the theoretical predictions due to the
anomalously small value of C44.

IX. CONCLUSIONS

In this paper, we have investigated a tight-binding model
for zirconium. We have been able to make a reasonably good
fit of the model to first-principles calculations of the indi-
vidual electronic-structure energy bands for a very wide
range of crystal structures and volumes. Unfortunately, the
total energies, which are just a sum over the occupied band
energies, seem extremely sensitive to small errors in the band

FIG. 7. The jagged solid line shows the z component of the
planar force constants �from our TB model� in a 1	1	25 hcp
supercell, containing 50 planes of atoms along the z direction, and
the straight solid line indicates the z−1.48 decay. The dashed lines
show the corresponding results from first-principles WIEN2K calcu-
lations; the straight dashed line indicates the z−0.94 decay.

TABLE III. Decay of planar forces from the tight-binding model
from 1	1	25 supercell calculations within the hcp structure. The
force is assumed to decay as zp �see text�. We have assumed experi-
mental volume and c /a ratios �Ref. 16�, except for the fcc materials
Al and Cu where we have assumed the “ideal” c /a ratio.

Element Ref. p

Al 37 −2.96

Cu 2 −4.01

Ti 3 −2.86

Hf 12 −4.18

Zr 12 −1.43

Zr This work −1.48

FIG. 8. Comparison of the lattice specific heat for the hcp struc-
ture in terms of an effective Debye temperature as a function of
temperature �see text�. The dashed line is the experimental data of
Ref. 30. To get the lattice component, we have fitted the data to a
curve of Cv /T vs T2 to get the low-temperature linear electronic
specific-heat component, which was then subtracted from the total
specific heat. The solid curve is calculated from thermally occupy-
ing the quasiharmonic phonon frequencies from our tight-binding
calculations. The results are scaled by the zero-temperature limit of
the Debye temperature, which is 280.2 K for the tight-binding re-
sults and 294.0 K for the experimental results.
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energies and are in poor agreement with first-principles re-
sults. By also including the ab initio total energies into our fit
�with a high weighting factor�, which is the standard proce-
dure in the literature,2,3,12,15,32,33 the total energies for a wide
variety of crystal structures and volumes are then in excellent
agreement with first-principles calculations, but the compari-
son with the energy bands worsens. We believe that increas-
ing the accuracy and transferability of the tight-binding fit
would be greatly enhanced if the energy bands themselves
could also be fit well simultaneously with the total energies.
This could be achieved by either improving �i� the functional
form of the tight-binding parameters, or �ii� the optimization
procedure, or both. We are currently examining this issue.

We have used a tight-binding model to calculate the pho-
non spectrum for Zr by using the direct-force method. The
results are qualitatively similar to experiment and are quan-
titatively adequate for thermodynamic averages over the
phonon spectrum.4 However, the highest frequency part of
the spectrum appears about 20% too small, and the lowest
acoustic branches are significantly lowered. Since the small-
q slope of the acoustic branches are proportional to the sound
speeds, which depend only on the elastic constants, we have
also calculated the elastic constants for Zr. To do this we had
to evaluate them using a procedure for crystals with aniso-
tropic stress, since the theoretical minimum of the total en-
ergy is at a slightly different volume from that used for the
experimental results. These techniques are useful for theoret-
ical calculations on hexagonal and other lower symmetry
crystal systems, and, in particular, for calculating elastic con-
stants for arbitrary c /a for hexagonal crystals. We found that
four of the five elastic constants are in good agreement with
experiment. However, the C44 elastic constant is anoma-
lously low and is responsible for the reduced sound speeds
and lowered acoustic branches in the phonon spectrum. We
tried to force our tight-binding fits to increase this elastic
constant by adding additional distorted structures that mimic
the effects of C44 into our tight-binding fits, but were unable

to do this without destroying the otherwise excellent fits for
all the other structures.

Aside from the small-q behavior, because the dominant
part of the phonon spectrum is probably accounted for fairly
well by the short-range behavior of the force constants, our
phonons are roughly in agreement with experiment. We at-
tribute the other errors in our calculated phonon spectrum to
an unusually long-range behavior in the falloff of the force
constants with distance, which require us to use symmetry
corrections that in themselves may also introduce errors into
the spectrum. We believe that this slow decay of atomic
forces is the probable cause of the many anomalous and
strongly anharmonic features of real Zr metal.

We have also estimated the decay of atomic forces with
distance for other metals, and believe that their slow falloff
may cause problems with using direct-force methods for
many of these materials �metals often tend to have power-
law behaviors for the distance dependence of many proper-
ties�. This behavior was found not only for our tight-binding
model but also from first-principles calculations as well. This
suggests that linear-response methods34 might be preferable
for many metals; semiconductors and neutral insulators tend
to have a short-ranged exponential distance dependence for
which the direct-force method would be probably be more
appropriate. It should be noted that the Born and Huang re-
lations �cf. Sec. VI� are a sensitive test of the supercell con-
vergence of phonons calculated by the direct-force method.
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