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Unscreened Hartree-Fock approximati®iFA) calculations for metallic Fe, Co, Ni, and Cu are presented,
by using a quantum-chemical approach. To the best of our knowledge these are the first HFA results to have
been done for crystallinedtransition metals. Our approach uses a linearized muffin-tin orbital calculation to
determine Bloch functions for the Hartree one-particle Hamiltonian, and from these obtains maximally local-
ized Wannier functions, using a method proposed by Marzari and Vanderbilt. Within this Wannier basis all
relevant one-particle and two-particle Coulomb matrix elements are calculated. The resulting second-quantized
multiband Hamiltonian withab initio parameters is studied within the simplest many-body approximation,
namely the unscreened, self-consistent HFA, which takes into account exact exchange and is free of self-
interactions. Although thel bands sit considerably lower within HFA than within the lo¢apin) density
approximation LSDA, the exchange splitting and magnetic moments for ferromagnetic Fe, Co, and Ni are only
slightly larger in HFA than what is obtained either experimentally or within LSDA. The HFA total energies are
lower than the corresponding LSDA calculations. We believe that this same approach can be easily extended to
include more sophisticategb initio many-body treatments of the electronic structure of solids.
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[. INTRODUCTION HFA exchange potential is nonlocal, i.e., the potential at
pointr depends on the density at all other positiohs an
In this paper we use a quantum-chemical approach teffect which the LDA exchange potential misses. However,
present unscreened Hartree-Fock approximati®iA) cal-  in practice LDA treatments are simpler than HFA calcula-
culations of metallic Fe, Co, Ni, and Cu. Because our aplions, because local exchange is easier to treat than nonlocal
proach uses localized Wannier functions, it is a Hubbard-likeexchange, and are usually in better agreement with experi-
method that should be easily generalized to include mor&ent. Therefore, DFTLDA-like) treatments have been far
sophisticated many-body treatments of correlation effects™ore common than HFA during the past few decades, even
Nonetheless, it is useful to understand what a HFA method? duantum chemistry(with a long tradition of methods

would give before moving on to consider correlation. Tobaiebd_o_n_ HE@T LDA calculati h b
place these calculations in context it is useful to briefly re- initio ) calculations have been very success-

view the status of electronic-structure calculations in solids.fUI for many materials and ground-state properties such as

Most existingab initio (first-principles methods for the crystal structure, ground state and |on|zat|on energy, [attlce
. . ) : _,_constant, bulk modulus, crystal anharmonicitynagnetic
numerical calculation of the electronic properties of solids

. . 1o moments, and some photoemission spectra. However, there
are based on density-functional theofpFT),” which in are also important limitations. For example, LDA predicts a

principle is exact and properly takes into account many-body,s 4 gap for semiconductors that is almost a factor of two
effects involving the Coulomb interaction between the elecyg, small, while the HFA overestimates the band gap for
trons; for an overview on the present status of DFT we refegemiconductor.In addition, for many strongly correlated
to the books in Refs. 2 and 3. But, in general, the functionalnarrow energy bandsystems such as high-temperature su-
dependence of the kinetic energy and the exchange and cqferconductors, heavy fermion materials, transition-metal ox-
relation part of the Coulombinteraction energy on the elec- ides, and 8 itinerant magnets, the LDA is usually not suf-
tron density are not known explicitly, and hence additionalficient for an accurate descriptidpredicting metallic rather
approximations and assumptions are necessary. A welthan semiconducting behavior, failing to predict quasiatomi-
established additional approximation is the local-density apelike satellites, etc

proximation (LDA)* (or local spin-density approximation Therefore, it is important to look foab initio methods
LSDA for magnetic systems which assumes that the and improvements that go beyond LSDA. Recently there
exchange-correlation potential depends locally on the eledhave been several attempts to comhateinitio LDA calcu-
tronic density. Even then, the functional dependence of théations with many-body approximatiods® All of these re-
exchange-correlation energy on the density is not known irtent developments add local, screened Couldhkhbbard
general, and it is usually necessary to make an ansatz for tlemergiedJ between localized orbitals to the one-particle part
exchange-correlation functional, which is based on the hoef the Hamiltonian obtained from aab initio LDA band-
mogeneous electron gas. The LDA goes beyond the simplestructure calculation, but differ in how they handle the cor-
electron-gas approximation, the HFA, in that correlation en+elation part. What these approaches have in common is that
ergy is explicitly taken into account. On the other hand, thethey have to introduce a Hubbaktias an additional param-
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eter and hence are not really first-principles treatments. Al- We use the “linear muffin-tin orbital(LMTO) method’
though they use a LDAb initio method to obtain a realistic within the “atomic-sphere approximation’ASA)?® to per-
band structure, i.e., single-particle properties, Coulomb maform the band-structure calculation for the Hartree Hamil-
trix elements for any particular material are not known, andonian in first quantization. The second step of constructing
the HubbardJ remains an adjustable parameter. In addition,Jocalized Wannier functions is important, since then both the
since some correlations are included in LDA as well as bytight-binding and Coulomb matrix elements should be im-
the HubbardJ, it is unclear how to separate the two effects portant only on-site and for a few neighbor shdtlse most
and double counting of correlation may be included in theseatural mapping to standard Hubbard-like mogeRhe di-
approximations. rect Coulomb matrix elements of the maximally localized
Other attempts to improve LDA include gradient correc-Wannier basis are rather large, about 20 eV in magnitude.
tions, nonlocal density schemes, self-interaction correctionsQur results are compared with those obtained from a stan-
and the GW approximatiofGWA), as defined below. Gra- dard LSDA calculatiorf:>2%3° Although the 31 bands and
dient corrections approximately account for the fact that the 4s band overlap in the LSDA approximation, our un-
the electron density is not constant budependent in an screened HFA calculations givedZands that lie consider-
inhomogeneous electron gas and use an exchange-correlatiably lower (between 10 and 20 e\than the 4 band. The
potential containing/n(r) terms. So-called generalized gra- HFA correctly predicts ferromagnetism for the ferromagnetic
dient approximation(GGA) functionals(e.g., Ref. 18 are  metals Fe, Co, and Ni and no magnetism for Cu, but with a
now routinely used. The nonlocal density schemes go bemuch larger exchange splitting between majority and minor-
yond LDA by considering that the exact exchange-ity 3d bands than obtained within LSDA and with a slightly
correlation potentiaV,.(r) cannot depend only on the den- larger magnetic moment per site than obtained experimen-
sity n(r) at the same position but should depend also on tally or within LSDA. The total energy is lower in HFA than
the electron density at all other position&’). Usually the in LSDA. The LSDA results for metals are probably more
new ansatz for the functional of the exchange-correlation enreliable than our HFA results, which lack important screen-
ergy contains the pair correlation function or the interactioning and correlation effects. In order for our method to go
of the electrons with the exchange-correlation H8{€. The  beyond LSDA we would need to use better many-body meth-
exact exchang€EXX) formalisnt®~2° cancels the spurious ods than the(unscreenedHFA, which should be possible
(unphysical electronic self-interaction present in LDA and within our scheme.
gradient corrected exchange functionals. A standard method To the best of our knowledge we do not know of any
for ab initio calculations of excited states is the GWA>  other published HFA resultsband structure, density of
Denoting the one-particle Green function 1 and the states, magnetism, magnetic moment, total energy), ftc.
screened interaction By, the GWA is an approximation for the 3d ferromagnets Fe, Co, and Ni, unless it was implicitly
the electronic self-energy~GW, which is correct in linear applied to these materials for schemes like the local afdatz,
order inW and can diagrammatically be represented by thevhere HFA results serve as an input to higher-order calcula-
lowest-order exchangéFock) diagram. The one-particle tions. This is not surprising since the HFA has, from very
Green functionG is usually obtained for the effective one- early on, been viewed as a poor approximation for metals.
particle LDA Hamiltonian. For example, when applied to the homogeneous electron gas
The HFA has long been a standard electronic-structur¢as the simplest model of an infinite metallic sysjeithe
method. Despite its many manifest defects, it is still impor-HFA has well-known Fermi edge singulariti&s®® These
tant to know what such a calculation would predict beforelead, in particular, to a vanishing density of statb©9) at
turning to more sophisticated approaches for correlation efthe Fermi energy, which is, of course, unphysical. This un-
fects. In this paper we provide HFA calculations for Fe, Co,physical feature, which is an effect of the long-range nature
Ni, and Cu using an approach that we hope will be easilyof the (unscreenedCoulomb term in the nonlocal exchange
generalizable to more sophisticated treatments of correlatiomotential, usually prevails in actual HFA calculations for real
This is done by using the following steps: metals®* though sometimes this singularity is hard to see in
(1) Perform a conventional, self-consistent, band-structuractual HFA result$® In our calculations the nonlocality is
calculation for an effective one-particle Hamiltonian, handled through the calculation of expectation valueatrix
namely, the Hartree Hamiltonian, to obtain a suitable basiglements of the density matjixwhich makes Hartree-Fock
set of Bloch functions. (HF) calculations as easy as Hartree calculations. Further-
(2) By taking into account only a finite numbéiof bands  more, because of our localized Wannier basis, we only keep
one chooses a truncated one-particle Hilbert space. Then-site and next neighbor Coulomb and exchange matrix el-
Marzari-Vanderbift® algorithm is then used to construct a ements. Hence our calculations have an effective short-
maximally localized set of Wannier functions, which spanranged Coulomb interaction. Although longer-range Cou-
the same truncated one-particle Hilbert space. lomb matrix elements are small in our calculations, which
(3) All one-patrticle(tight-binding and two-particl§Cou-  is why we truncate them, it is possible that if all of them
lomb) matrix elements of the Hamiltonian within this Wan- were kept to infinite distances that they could add up to give
nier function basis are calculated. Fermi edge singularitieévhich are due to the long-ranged
(4) The resulting electronic many-body Hamiltonian in nature of the bare Coulomb interactjoand other standard
second quantization with parameters determined from firshknomalies. Correlation or screening would quickly Kill
principles is studied within the HFA. these effects.
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The approximation closest to HF is the EXX

formalisnt®~2* mentioned earlier. The method was first ap-

plied to atoms by Talman and Shadwick_ater, the method
was recognized as a DF method with EXX enetygnd

applied to Si and Ge by Bylander and Kleinman in frame-

work of the pseudopotential methddThe EXX method is
different from the LDA only in that the EXX enerdy,rather
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matrix elements in Eq. 2 of course depend on the one-
particle basig|i)} that is chosen. But because of the com-
pleteness relation the physical results should not depend on
the choice of the one-particle basis. Because of the lattice
periodicity an obvious choice for a one-particle basis is a
Bloch basis{|nk)}; then the orbital one-particle quantum
numbersn,k are the band inder and the wave numbek

than the LDA exchange energy, is used; thus, LDA correla{within the first Brillouin zone. In practice, one can work
tions are still present. The EXX energy, which corresponds t@nly on a truncated, finite-dimensional one-particle Hilbert
the Fock term in the HFA, is treated as a functional of elecspace. Here the truncation consists of including only a finite
tron density and the method is aldike HF) self-interaction- number of bands and a set lofvalues from a discrete mesh
free. Although the EXX would appear to be very similar to in k space. But, because the Bloch states are delocalized, a
HF, the EXX-only method?3° which does not include any very large number of Coulomb matrix elemertepending
correlation, gives the dispersion of noninteracting electronsn four quantum numbersbetween all possiblk states
instead of the HF dispersion when applied to the homogewould have to be calculated. Therefore, it seems that a more
neous electron gas, while their total energies are exactly thgppropriate basis would be to use well localized wave func-
same. For atoms the EXX-only method gives total energiesions, where it is expected that a short-range tight-binding
that agree well with HF. Due to these similarities, we will assumption will hold, i.e., the on-site and the intersite matrix
compare our results with EXX where possible. One shoulcelements for only a few neighbor shells are sufficient. Wan-
note, however, that most EXX calculations include a localnier stategwhen maximally localizedare such wave func-
correlation potential. tions. The Wannier states are related to the Bloch states by

The paper is organized as follows. In Sec. Il, we brieflythe unitary transformations:
summarize some basic notation, give the Hamiltonian in first
and second quantization, and describe our LMTO-Hartree
calculations and our Wannier basis functions. Results for the
matrix elements, in particular, the direct Coulomb and ex-
change matrix elements are given in Sec. Ill; we also com-
pare these results with calculations of the Slater integrals. |¢nk>=2 e'*R|Rn).
The application of thgunscreenedHFA to the multiband R
Hamiltonian in second quantization is the subject of Sec. IVNow our strategy is the following:
For an interpretation of the results we compare the numerical (j) perform a traditional band-structure calculation for an
HFA results obtained for the crystal with previous atomiceffective one-particle HamiltoniaH o with lattice periodic-
HFA results and with numerical and analytical results for ajty to obtain a Bloch basis of the Hilbert space. Only a finite
simplified local atomic model in Sec. V. A comparison with nymper of band indices will be considered and the calcula-
the more standard LSDA as well as EXX results follows intions will be done for a discretized, finite meshknspace,
Sec. VI, before the paper closes with a short discussion. j e we will work only on a reduced, truncated Hilbert space.

(i) Determine well-localized Wannier functions spanning
the same(truncated Hilbert space as the Bloch basis from
the canonical transformatiof8) described above.

Of course, the important energy baridsd corresponding
band indicesare those that determine the electronic proper-
ties of the system, i.e., the bands near to the Fermi level.
Because the Hilbert space is truncated, we no longer work
with a complete basis set. Hence, it is important to start from
Bloch functions obtained from a band-structure calculation
for a well-chosen effective one-particle Hamiltonian. The

malism of “second quantization,” automatically accounts for5|mplest choice would be the bare one-particle potential

the antisymmetry through the fermion anticommutation rela-Y (). However, without any Coulomb repulsion thed 3
tions. In second quantization the full many-body Hamil- St&es become very strongly bound atomiclikere states,
tonian can be written as: which would be pushed well below the Fermi energy, and

therefore the corresponding Bloch eigenfunctions are not a
good starting point to describe the electronic bands close to
the Fermi level. Because the Hilbert space is truncated, it is
@ extremely important to start from a band Hamiltoni@n

+ Vg that gives eigenfunctions as close as possible to those
Herei,j,k,| denote a complete set of one-particle orbitalwhich are expected to form the relevant many-body states of
quantum numbers and, o’ are the spin quantum numbers. the interacting system. The bare one-particle potential is con-
The stategi) and the corresponding wave functiogs(r) sequently a bad choice. Therefore, we choose the Hartree
=(rli) form a basis of the one-particle Hilbert space. TheHamiltonian, which already accounts for effects of the Cou-

1 )
WRn(r):<r|Rn>: N Ek: eilkR‘l/nk(r)a

()

II. HAMILTONIAN AND BASIS FUNCTIONS

A system ofN, interacting(nonrelativisti¢ electrons can
be described by the Hamiltonian

Ne 2
e
H=T+V+W= >, —. (1)
= ri—rl

V(r)+ 2,

i>]

2 e
Pi
&
The first partT is the kinetic energy of the electrons. The
V(r) describes the external one-particle potential. The for

ot
> Wij ki€iC;yr Cko' Clo -

ij.kl,o0

1
H:_Z tijCiTa'Cja'+§
L],0

245102-3



I. SCHNELL, G. CZYCHOLL, AND R. C. ALBERS PHYSICAL REVIEW B8, 245102 (2003

TABLE |. Some properties of the lowest eight maximally localized Wannier functions of Fe.

n 0 1 2 3 4 5 6 7

z,co 0.9761 0.9765  0.9596 0.9800  0.9773 0.8754  0.8731  0.8763
>rCR 0.0019 0.0018  0.0081 0.0019 0.0017 .2224 0.2381  0.2265
SRCRM 0.0955 0.0726  0.1797 0.0611 0.0728 .5480 0.5509  0.5347
>gCR", 0.9026  0.9256  0.8121 0.9370  0.9255 .2295 0.2110 0.2388

lomb interaction in the mean-field approximation. Therefore, & - &n .

the eigenenergie®nergy bandswill be about the right mag- Wn(R;r)= ; {Du(NA+ &, (NBILYL(r).  (6)

nitude and the resulting basis functions can be expected to be

more suitable in the energy regime around the Fermi levelyere, theg,(r)’s are normalized radial basis functions and

TS-Zﬁ?'a:ihne eBJ%Chuggglns is obtained by solving the one-part|cle¢yl(r) are their energy derivatives for an eneigy ; this is

ger eq a standard notation in the LMTO meth¢ke Ref. 28 One

can then calculate the weight of the contributions to the Wan-

Po(D) = 1K) (1), (4  nier function(centered a0) within the different muffin-tin
spheres

2

;—m+V(r)+VH(r)

where the Hartree potential is given by

<Wn|Wn>REf d3r|Wn(r)|2:fd3r|Wn(R;r)|21 (7

e’n(r’) R 0

[r—r'| ' ® and one can also decompose this into the diffeferdntri-
butions according to

Since the only purpose in solving the effective one-particle

Schralinger Eq.(4) is the construction of a suitable basis set

VH(r):f d3r’

!
of Bloch functions, we will not make use of the eigenener- wawayr=> > {AR12+(42)|BR|%.
giese (k) obtained in Eq(4). Note that the Hartree poten- N (8
tial, and hence our basis, is independent of spin. Neverthe- =c”
less we cartin the following) expand the spin dependent HF
Hamiltonian in this basis. For the 31 system iron these quantities are tabulated in Table

For the materials of interest we performed a self-l. The first line is the weightw,|w,), in the center muffin
consistent Hartree band-structure calculation. Besides thién. Between 88 and 98 % of the total weight of the Wannier
nuclear charge we used tifexperimentally known results ~ functions is to be found already within the center muffin tin;
for the lattice structurébcc for Fe, fcc otherwise; Co should this shows how well localized our Wannier functions are
actually be hexagonghnd for the lattice constant as input. With the lowest five functions having values of more than
For the band-structure calculation we used the LMTO-ASA95%. Rows 2-4 in this table indicate the differéntontri-
method of Refs. 27 and 28. We have used the frozen corbution orl character of the Wannier functions. One sees that
approximatiorf® i.e., only treated the valence electrons asthe optimally localized Wannier functions are not pure within
actual bands, while leaving the core electrons “frozen.” Fortheir | character, but the lowest five Wannier functidfs-4)
the radius of the overlapping muffin-tin spheres, the Wignerstill have mainlyl=2 (3d) character. Higher band-index
Seitz radiusS, we used:S=2.662, for Fe, S=2.621a, for  Stategwhich are slightly less well localized according to row
Co, S=2.602, for Ni and S=2.66%, for Cu (Ref. 2§. 1) are admixtures that have mainly=1 (4p) character
Within the muffin-tin spheres the potential and wave func-(about 50%, but also a considerable amount {0 (4s)
tions are expanded in spherical harmonics with a cutofandl=2 (3d) character. Corresponding results for the other

| max=2, i.€.,S, p, andd orbitals are included, which limits the 3d systems Co, Ni, and Cu are similar and, therefore, not

calculation to nine bands for one atom per unit cell. repeated here. Our detailed results are given in Ref. 30.
In Ref. 40, we describe how maximally localized Wannier

f!JnCtion_s can be calculated from LMTO Blpch wave func_- IIl. ONE PARTICLE AND COULOMB

tions using a method proposed by Marzari and Vanderbilt, MATRIX ELEMENTS

which is described in detail in Ref. 26. The Wannier func-

tions are admixtures having different angular contributions From the optimally localized Wannier functions we calcu-
(3d, 4s, 4p). Since the original Bloch functions from which late the one-particle matrix elements

the Wannier functions are constructed were given in terms of

. . . . . 2
a spherical harmonics expansion, the new Wannier functions N he
(and their contribution in each individual muffin-tin sphere tip= | &7 Wi (n)] =5 VIV wy(r),  (9)
can also be decomposed into these spherical harmonics con-
tributions and the Coulomb matrix elements of the Hamiltonian
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TABLE II. On-site direct and exchange Coulomb matrix elements between Wannier functions for Fe. All
energies are in eV'’s.

Unm 0 1 2 3 4 5 6 7 8

0 22.42 20.90 20.10 20.96 20.86 14.16 13.32 13.96 13.50

1 20.90 23.04 19.95 21.55 21.53 14.07 13.54 13.58 14.15

2 20.10 19.95 20.77 20.05 19.83 12.95 13.46 13.37 13.22

3 20.96 21.55 20.05 23.27 21.67 13.46 14.05 13.98 13.98

4 20.86 21.53 19.83 21.67 22.99 13.71 13.28 14.25 14.12

5 14.16 14.07 12.95 13.46 13.71 13.67 9.45 9.58 9.64

6 13.32 13.54 13.46 14.05 13.28 9.45 13.52 9.27 9.50

7 13.96 13.58 13.37 13.98 14.25 9.58 9.27 13.75 9.65

8 13.50 14.15 13.22 13.98 14.12 9.64 9.50 9.65 13.81

Jom 0 1 2 3 4 5 6 7 8

0 22.42 0.84 0.61 0.75 0.99 0.86 0.73 0.81 0.42

1 0.84 23.04 0.77 0.88 0.84 0.70 0.51 0.48 0.86

2 0.61 0.77 20.77 0.88 0.70 0.96 0.93 0.92 0.60

3 0.75 0.88 0.88 23.27 0.82 0.33 0.78 0.64 0.69

4 0.99 0.84 0.70 0.82 22.99 0.52 0.46 0.75 0.83

5 0.86 0.70 0.96 0.33 0.52 13.67 0.58 0.56 0.57

6 0.73 0.51 0.93 0.78 0.46 0.58 13.52 0.45 0.56

7 0.81 0.48 0.92 0.64 0.75 0.56 0.45 13.75 0.55

8 0.42 0.86 0.60 0.69 0.83 0.57 0.56 0.55 13.81

Results for the on-site direct and exchange Coulomb ma-
W12,34:f d® " wi(r) wi(r’) trix elements between the optimally localized Wannier func-
tions are given in Table Il for iron. The direct Coulomb in-
e? tegralsU,, =W, mn between the Wannier states with the
] W3(r'") Wy(r). (100 lowest five band indicesn(me{0, . ..,4), which accord-

ing to Table | have mainly & character are rather large, up

Here we use the abbreviated notation 1 to mRan, and 2 0 23 €V for Fe. Within the 8-like bands the interband
to mean forR,n,, etc. In Ref. 40, we have described how direct C_oulomb maitrix elements are of the same magnitude
these matrix elements can be evaluated. Concerning the Cofi the intraband matrix elements. The matrix elements be-
lomb matrix elements, we have used the two different nutWeen 3l states and dp states are considerably smaller, of
merical algorithms proposed in Ref. 40 for their evaluation,the magnitude of 13__14 e_V. For electrons ||sp4$t§1tes
namely the FFT algorithm and a spherical expansion algolMMe {5, . . .,9) the direct intraband Coulomb matrix ele-
rithm. The latter method makes use of the fact tfimteach menys are again of the _order of 13—-14 eV, but the interband
muffin-tin spherg the Wannier functions are explicitly given Matrix elements are slightly smaller, about 9 eV. The ex-
as linear combinations of products of spherical harmonic§hange matrix elements,y=Wnmam are always much
and a radial wave function. The expansion smaller, usually less than 1 &¥6br n#m). The correspond-

ing results for the other@systems investigate@o, Ni, and
C K Cu) are very similar?
= 2 Yiz(?') Y() (11 For the five states with predominand 8haracter we have
=k calculated the averages of the on-site direct and exchange
Coulomb matrix elements
(K={k,m}) makes it possible to express the on-site Cou-
lomb integrals as one-dimensional integrals over products of 1
the radial functions and Gaunt coefficients. The results ob- U= > Wanmrmem. (12
tained by this algorithm and by the independent FFT algo- mm’
rithm agree within errors of atmost 1%. Since our basis func-
tions are well localized, we may truncate the tight-binding 3 i S w (13)
and Coulomb matrix elements. We only consider on-site and 20 S mm’ mm’
next neighbor matrix elements, by next neighbor Coulomb
matrix elements, we mean matrix elements for which theas well as the averages of the absolute values of the nearest-
four sites(appearing in the indicgésre(pairwise maximally  neighbor (NN) and next-nearest-neighbdNNN) hopping
a next neighbor distance apart. matrix elements

1 _i 4w T
|r_r’|_k:()2k+lrk

>
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TABLE |lIl. Averaged on-site Coulomb, exchange, nearest 20 VR
neighbor, and next-nearest-neighbor hopping matrix elements for DOS [1/eV]
the four 3 systems; energies are in eV. 0]
U J tn tnn % s T ] T
Fe 21.1 0.81 0.59 0.24 ]
Co 226 0.87 0.55 0.10 g
Ni 22.6 0.88 0.75 0.11 T |
Cu 24.5 0.94 0.80 0.12 ! < ]
T~
_20_¢<>
1 r H N T P Ho 1 2
NN = 52 2 |t - (14
25 n,m

FIG. 1. Hartree-Fock band structure and density of stgies

) . spin) of Fe; the full line shows the majoritgspin up, the dashed
The results obtained thereby for the four transition metalgine shows the minority spin component.

under consideration are shown in Table Ill. Thevalues
vary between 21 eV for Fe and 25 eV for Cu, thealues are  |V. UNSCREENED HARTREE-FOCK APPROXIMATION

smaller than 1 eV and the hopping matrix elements are of the . . o
magnitude 0.5-0.7 eV for NN and 0.1-0.2 eV for NNN, and After we have determined the matrix elements within our
further on decrease with increasing distance. ’ restricted basis set of nine maximally localized Wannier

We have also evaluated the Slater integfals: functions(per site and spin we have a Hamiltonian in sec-
ond quantization of the form

k

"
FkEezf dr rzf dr' r'2 |R_p(r)|? ﬁ IRi—2(r")?, H=2> tlZCIUCZU—'—% > Wips61,C3,/Ca0:Ca0

r= 120 123400’

(15) (16)

for which all the matrix elements are known from first prin-
ciples. The simplest approximation one can now apply is the
HFA, which replaces the many-body Hamiltonian by the ef-
fective one-particle Hamiltonian

whereR,_,(r) is a radial(atomig d-wave function(obtained
by solving the Schidinger equation for a radial symmetric
potential, for instance Note that only the three integraie,

F2, and F* are required to determine all the Coulomb
d-matrix elements. Using the radialwave function ob-
tained from the Hartree calculation we obtain the following Hue= 2 (ti+ 3 el co, 7
values for the Slater integrals of the foud 3ystems:F° 120

=21.62 eV for Fe, 23.18 eV for Co, 24.69 eV for Ni, and with

26.27 eV for Cu. This means that the Slater integFdlsare

rather good estimates of otaveragetl Coulomb matrix el- HF _ g Hart, s Fock_ T

. . = +3 0= W13 45— 8o W Cs Chyr)-
ements. These values are also in agreement with older resul{g*?¢ =12 * =12 3%:‘, [Was 42~ 850 Waneal{C3,/Cac)
obtained in calculations fordatoms*? In Table IV we show (18)

our F¥ values for the four @ crystals and compare them . t .

: . ) ; . Here the expectation valués, .c,,) have to be determined
with corresponding atomic calculations from Ref. 42. Obvi- elf-consistently for the HE H%miltonie(rl?) Note that the
ously, there is fairly good agreement between these atomit y '

calculations and our results.

20

] o] DOS [1/eV]
TABLE IV. Slater integralsF* (in eV) for the 3d systems Fe, ] N7

Co, Ni, Cu as obtained by our calculations and within an earlier 0 N T
atomic calculatiorf? — R

. ’

0 2 4 -
F F F 5 I

Q 4
Fe (crysta) 21.62 9.61 5.91 = 0l
Fe (atom[42]) 23.76 10.96 6.81 T
Co (crysta) 23.18 10.31 6.34 LIS Bl Saers SRR IOPTC
Co (atom[42]) 25.15 11.58 7.20 -20—_‘<;§
Ni (crysta) 24.69 11.00 6.77 —T T
Ni (atom[42)) 26.53 12.20 758 r xw r T Ko 12 3
Cu (crysta) 26.27 11.72 7.23 FIG. 2. Hartree-Fock band structure and density of stgtes
Cu (atom[42]) 27.90 12.82 7.96 spin of Co; the full line shows the majorityspin up, the dashed

line shows the minority spin component.
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204 3 S TABLE V. Spin magnetic momentsug /atom) from different
] \ \ DOS [1/eV] methods. The EXX results are from Ref. 45.

10 177 \ 173 HF EXX LSDA Experiment
AT *W Fe 2.90 3.27 2.18 2.22

Energy [eV]

] g Co 1.90 2.29 1.58 1.72
/ \/ Ni 0.76 0.68 0.58 0.62
.10
see that the exchange term has two effects: It produces an
] exchange splitting and the possibility of magnetic solutions,
r X W L I Ko 1 5 5 and it draws the 8 bands energetically down by an amount
of about 20 eV. Compared with experiment the HFA overes-
FIG. 3. Hartree-Fock band structure and density of stgtes  timates magnetism and leads to overly large values for the
spin of Ni; the full line shows the majorityspin up, the dashed magnetic moment, see Table V. This is consistent with
line shows the minority spin component. Heisenberg or Ising model studies where the mean-field ap-
proximation HFA also has the tendency to overestimate mag-
Fock (exchangg term is spino dependent and may, there- netism and magnetic solutions. However, the reason why the
fore, give rise to magnetic solutions. 3d bands lie so far below the Fermi level and thepband
The Hartree-Fock results for the four materials of interest, HEA has nothing to do with the existence and overestima-
are shown in Figs. 1-4. We show the effective HF bandijon of magnetism. This can be seen already from the non-
structure and its density of statd309). In our HF calcula- magnetic system Cu for which tif&ully occupied 3d bands
tions there are no singularitigsr a vanishing DOBat the  z)50 lie at about 22 eV below the Fermi levsee Fig. 4 To
Fermi level since we start from a localized description andyemonstrate this also for a system with a partially filletl 3
consider the Coulomb matrix elements only up to next neighyand we have done a nonmagnetic Hartree-Fock calculation
bors. Therefore, we implicitly truncate the Coulomb interac-for o (by forcing equal occupation for both spin directians
tion in real space and in practice work with an effective The results for the band structure and the DOS are shown in
short-ranged interaction. Within HFA the main part of thee 3 Fig. 5. We observe again that the main part of tliel@nds
bands lies between 18 and 22 eV below the Fermi level ang,e \well below the 4 bands and Fermi level; note the hy-
is separated from thesp bands. We find magnetism in HFA igization gap caused by the unoccupied Bands above
for Fe, Co, and Ni in agreement with experiment. The fiveine Fermi level.
majority spind bands are about 20 eV below the Fermi en-
ergy and are completely filled. But the partially filled minor-
ity d bands have twdfor Fe), three(for Co), and four(for
Ni) filled bands betweer- 18 and— 15 eV, and the rest are
around and above the Fermi level. The resulting magnetic We have seen in the preceding section that one effect of
moments are shown in Table V. For copper no magnetisnthe HFA calculation, when compared with the Hartree calcu-
and exchange splitting of thed3bands is obtained, but the lation, is the shift of the 8 bands dowr{about 20 eV below
(spin degeneraje3d bands are at about 22 eV below the the Fermi level and about 8—10 eV below the bottom of the
Fermi level and separated from thepgtbands. If we com- 4spband. This shift of thed bands is about the same energy
pare these results with the results of the simple Hartree amas the Coulomb matrix elemenrits and roughly agrees with
proximation, which are qualitatively similar to LDA results earlier atomic Hartree-Fock calculatiotfs®® where the @
(as shown, e.g., in Ref. 29, or in our detailed resbitsve  states are also about 10 eV below thedtates.

V. COMPARISON WITH ATOMIC
HARTREE-FOCK RESULTS

20

20
] \ DOS [1/eV] ] \ \ DOS [1/eV]
10 ] 10 § ]

Energy [eV]
fe]
|
Energy [eV]
fe]
|

10 — 104 -
] ——— | =
1 P 1
r X W L r Ko 5 10 r X W L r Ko 1 2 3 4 5
FIG. 4. Hartree-Fock band structure and density of stétas FIG. 5. Nonmagnetic Hartree-Fock band structure and density
both degenerate spin directionsf Cu. of states(for both degenerate spin directionsf Co.
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20 7 b2 wherei,j €{0, ... ,4 denote the fivédegenerate3d states.
] AEL) — dE,@ Assuming that no symmetry breaking occurs and that off-
15 el diagonal expectation value{szU,ciU) for (io)#(jo’) van-
] —p® p(3) — —p® ish, the standard HFA decoupling leads to the following ef-
— 10 fective one-particle Hamiltonian
E ]
Eﬁ ] H= % 8il—iol':ACiTeri0' ' (20)
g
Mo — s s(1) — — s where
-5 HFA _ T T T
] __dE,(2 — dT,3 g, =et+U C. /Cizr)—{(Ci,Cis) | —J CixCig)-
= dTy®) | dTy3) e " E (o o) = (i) 127“ (©4e610)
] dE,(2) —
-10 both spins majority minority (21)
paramagnetic magnetic Obviously, in this atomic HFA treatment starting from local-

ized orbitals the self-interaction is exactly canceled. In the

FIG. 6. Energy eigenvalues from quasiatomic HFA calculation.simple Hartree approximatiofHA) the exchange decou-
The numbers in brackets indicate the degeneracy. plings are neglected, which means that all the decoupling
ferms with the negative sign would not occur. Therefore, the

Because the intersite hopping matrix elements in Table I . . . .
corresponding Hartree one-particle energies are given by

are much smaller than thg values one may consider an
expansion int/U, with the zeroth-order approximation to
completely neglect hopping. Doing this, we have performed = +U, (c Cjor)- (22)

a quasi-atomic HFA calculation for Co, by including only the io! I

on-site one-particle and two-partici€oulomb matrix ele- i ) ) )
ments. The results are summarized in Fig. 6; the degenera&emparing this result with the Hartree-Fock one-particle en-
of the different levels is also indicated. In the paramagneti€rdies, we find that the HF occupied levels are shifted down-
case, we find that thed3bands are below thesdbands(at ~ Wards by an amount of

the Fermi level by about 6 to 7 eV, which is in rough agree-

ment with the earlier atomic HFA result$*® The splitting T S (el
between the occupied and unoccupieat ates is about 23 U(ci(,ci,,>+Jj#i (€joCjo)
eV, which is the on-siteJ for Co. Magnetic HFA solutions

are also found in the atomic limit for Co, as shown in therelative to the Hartree levels. Momentarily settihg 0, we
right panel of Fig. 6. The majority-spind3states T,, and  see that forN occupied levels the Hartree approximation
Ey) are now completely filled and energetically lie lower gives the one-particle energies

than the corresponding nonmagnetic HFA states. But only

the (threefold degeneralteT,, states of the minority-spin gin=s+NU, (29
electrons are filled whereas tlg, states of the minority _

electrons are emptiand now even 26 eV above the occupied Whereas the HFA yields

d states. The additional energetical shifts between the occu-

pied 3d states in the paramagnetic and ferromagnetic atomic ei =g+ (N-1)U. (25

HFA solution are due to the exchange matrix eleménts ) ) )

This behavior can qualitatively be understood within the The occupied Hartree-Fock one-particle energies are lower
framework of the following simple, analytically solvable than the corresponding Hartree one-particle energies by
model. Similar to the numerical HFA results presented andvhich is a consequence of the artificial and unphysical self-
discussed above, we neglect all intersite one-partictgp-  interaction still present in the Hartree approximation that is
ping) and interaction matrix elements. Furthermore, we asexactly canceled in Hartree-Fock. This also explains why the
sume that we have diagonalized the one-particle Hamiltoniahlartree-Fock bands are shifted downwards from the Hartree
taking into account only the atomiad3evels and assuming bands by an energy of the amouhtOne also sees from this
that the on-site one-particle diagonal matrix elementthe  simple atomic-limit Hartree-Fock model that the energy dif-
Coulomb matrix elements), and the exchange matrix ele- ference between the highest occupied and the lowest unoc-
mentsJ are equal, i.e., thedlevels are degenerate in the cupied effective Hartree-Fock one-particle energies is again
atomic limit with no crystal-field effects. Then the atomic essentiallyU, which is once more in agreement with our

(23)

part of the many-body Hamiltonian can be written as numerical results for the crystal and for the atsh Fig. 6).
U Note that we have ignored interactions, which cause an
H=> ¢ ¢/ c,+= > ¢l c,c Cjor additional shift ofd bands below thes bands by about an
o 2 iy=io" s additional 10 eV in the full HFA calculations.
3 Taking into account the exchange interactibagain and
= > ciTUc.T /Cig'Cios (199  denoting byN, the number of occupied states with sgin
2isioe 17 (i.e., N=N;+N,) one obtains in HFA
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HFA y y y y
ey, =et+(N—1)U—(N,—1)J. (26) 20 e— — — Hartree 5
Then the total energy in HFA is given by T [
g 4o —
EwNHMU—E WJ @) = |
v & 60 -
For the total energy we have added the necessary correctio?a -
term to the sum of the occupied energy lev@mich like the 5 -0 i
double counting term that shows up in band-structure calcu5 I ]
lations. Now for partially filled 3 shells the occupation of = ;
the different spin directions may be different. Denotilg (S '™ [ ]
=N;—N, we obtain for the total energy i ]
-120 —
N(N—1)  N?+M? . . . .
Eit=Ne+ 5 U- 7 J+ EJ' (28 Fe Co Ni Cu

FIG. 7. Total ground-state energgf the valence electronsb-
tained in Hartree approximation, LSDA, and HFA for thd 8an-
sition metals Fe through Cu.

The magnetic i1+ 0) total energy is lower than the non-
magnetic(consistent with Hund’s rulgs

Take once more Co with eighti3electrons. The paramag-
netic (nonmagnetig state has the occupatiomMs =N,=4  from the HFA. For example, thed3bands now fall into the
(N=8 andM =0). For this configuratioricorresponding to  same energy region as thegbands, i.e., the LSDA results

the left panel in Fig. Bone obtains are not so different from the Hartree results. This means that
P the exchange-correlation energy leads only to a small shift of
Eor =8¢ +28U—12J. (29 the 3d bands downwards by atmost a few electron volts and

The Hund’s rule magnetic solution hasl 3tates of one spin & Smaller exchange splittin@iso of the magnitude of 1 6V
direction completely filled, i.e.N;=5 andN,=3 (N=8 On the other hand, in the LSDA calculations the self-

andM =2). This gives in.ter'action t'erms are npt c;ompletely ca}nceled, i.e.(uame-
alistic) self-interaction is included, which may lead ta 3
Egg{l):88+28U—13]_ (300  bands that lie energetically too high, as discussed for the
) ] o ] atomic limit in the preceding section.
Therefore, the magnetic configurationith a magnetic mo- To see the effect of correlations within LSDA, we have

ment of 2 for the atomnis energetically more favorable by ajso performed an exchange-only calculation for Co, i.e.,
Note also the exchange splitting in the occupied energy eipnly the exchange part of th@ocal) exchange-correlation
genvalues potentiaf* was employed. The result is similar to the LSDA
e =23 31 result, and thémajority) d bands lie only about 1 eV lower
I (Y than within LSDA, i.e., very minimal when compared with

and that our model would predict the unoccupied minoritythe large drop in the full HFA. This exchange-only LSDA
spin E,g state to beU +J higher in energy than the corre- result also contains self-interactions, and their exact cancel-
sponding occupied majority spin state. lation in the HFA is responsible for the large shift down-

The simple model in this section differs from the resultswards of thed bands. Nevertheless, the LSDA result indi-
shown in Fig. 6 in that we have replaced the full matrixbf cates that a possible effect of correlations is to shift tbe 3
andJ by scalar values fod states only(ignoring s-d inter-  bands up relative to exchange-only calculations, and hence
actions, for example However, it captures all of the impor- one would expect a similar effect if correlations could be
tant physics without attempting to be completely quantita-2dded to the full HFA calculations.

tive. One can also calculate the total energy in the Hartree,
HFA, and LSDA approximations. The results obtained for
VI. COMPARISON WITH LSDA AND EXX RESULTS the four materials of interest are shown in Fig. 7. We see that

the total energy is always significantly lower in HFA than in

For comparison with the HFA results described in Sec. IVthe Hartree approximation, which is expected because the
we have also performed a standard LSDA band-structure caHFA uses a better variational wave function. The HFA total
culation with the LMTO-ASA method. We used the von energy is also lower than the LSDA, and the LSDA result is
Barth—Hedin exchange-correlation potenfiSince these lower than the simple Hartree result. Because of the un-
results are very similar to those of Ref. 29, we do not repeaknown approximations that go into constructing LSDA, it is
them here. Again, our detailed results are given in Ref. 30hard to guess ahead of time that this would be the case.
For the magnetic systems Fe, Co, and Ni we obtain an exHowever, it is well known that the LSDA approximation
change splitting and the prediction of magnetic solutiongproduces a bad total exchange-correlation energy; the reason
with magnetic moments shown in Table V, which are in bet-why such good agreement with experiment is found is that
ter agreement with experiment than the HFA results. relative exchange-correlation energies are nonetheless rea-

The energy spectra of the bandO$9) are quite different sonably accurately calculated.
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We now turn to the comparison of our results with EXX Coulomb matrix elements but with screened Coulomb matrix
calculations for 8 system&>° This method, which is self- elements. Probably the nonperturbational schemes like
interaction-free, uses the EXX enefdyinstead of a LDA  DMFT are also only applicable for screened Coulomb matrix
exchange and then adds in a LDA correlation potential. Likeelements.
the HFA the magnetic moments for Fe, Co, and$¢e Table We believe that the approach we have used for our HFA
V) are overestimated by EX® Our HFA results for Fe calculations can easily be generalized to provide an approach
show the majority 8 bands about 20 eV below the Fermi for combiningab initio and many-body methods for the cal-
level (Fig. 1), whereas the EXX density of statéSig. 2 in  culation of the electronic properties of solids. The starting
Ref. 23 show these bands only about 10 eV below the Fermpoint is a traditional band-structure calculation for an effec-
level. The differences are probably due to th®A) corre-  tive (auxiliary) one-particle Hamiltonian, which can be the
lations shifting the 8 bands upwards. This upward shift also Hartree Hamiltonian. This yields, in particular, the eigen-
occurs with EXX+ RPA (random-phase approximatipne-  functions in the form of Bloch functions. Keeping only a
sults in Ref. 45. Here the LDA correlations present in EXXfinite number ofJ band indices restricts and truncates the
are replaced by RPA correlations and thleel#ands are found Hilbert space for further calculations. We use the Marzari-
in the region of the 4p bands(similar to LDA). It is likely Vanderbilt algorithm to construct maximally localized Wan-
that the qualitative agreement between the HFA and EXXier functions (within the truncated one-particle Hilbert
results for Fe is due to the correct cancellation of self-spacé. All the one-particle(tight-binding and two-particle
interactions. (Coulomb matrix elements between these Wannier functions

can be calculated. The strong localization guarantees that

only on-site matrix elements and near neighbor intersite ma-
VII. DISCUSSION AND CONCLUSION trix elements have to be calculated. We are left with a many-

body Hamiltonian in second quantization but with param-

We have presented the results(ofiiscreenedHFA calcu-  eters determined from first principles for any given material,
lations for the @ transition metals Fe, Co, Ni, and Cu. We \which we have solved within the HEA but for which we
obtain magnetic solutions for Fe, Co, and Ni wilightly)  should also be able to solve by using more sophisticated
too large magnetic moments when compared to experimentahany-body techniques. Our HFA approach is free from the
or LSDA results. The occupied HFAd3bands lie about 20 problems of double counting of correlation effects and self-
eV below the Fermi leveland the Hartree resilltwhich is  interaction and considers exchange contributions exactly. It
also the magnitude of the splitting between occupied angjoes not rely on assumptions based on the homogeneous
unoccupied 8 bands and of the magnitude of the on-siteelectron gas or a dependence on the local electron density.
Coulomb matrix elementthe “Hubbard” U). This down-  An inhomogeneouslattice) electron system is considered
wards shift of the HFA 8 bands compared to the Hartree right from the beginning. Within the standard Feynman dia-
and LSDA 3 bands can be understood as due to the selfgram approach the most straightforward next step beyond
interaction correction of HFA. HFA would be a summation of bubble diagrams leading to a

One may argue that these results are not surprising and a@BnormalizedscreeneflCoulomb interaction. This would re-
artifact of using the unscreened HFA. Caly initio calcula-  quire calculating the exchange contribution not with the bare
tion of the direct Coulomb matrix elements yields large val-put with a screened Coulomb interaction. To take into ac-
ues of the magnitude of 20 eV. HFA can be considered to beount the effects of screening would require a calculation of
an approximation for the self-energy which is correct only inthe charge susceptibility and ttstatio dielectric constant,

linear order in the Coulomb interaction. But for these largewhich could be done within a generalized Lindhard theory,
values of thel terms HFA is certainly not sufficient but one for instance.

has to apply better many-body approximations. One should

apply systematic extensions of HFA, which within the stan-

dard perturbational approach can be representdd bysum-

mation of an infinite series pfFeynman diagrams, or one ACKNOWLEDGMENTS
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