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Unscreened Hartree-Fock calculations for metallic Fe, Co, Ni, and Cu
from ab initio Hamiltonians
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Unscreened Hartree-Fock approximation~HFA! calculations for metallic Fe, Co, Ni, and Cu are presented,
by using a quantum-chemical approach. To the best of our knowledge these are the first HFA results to have
been done for crystalline 3d transition metals. Our approach uses a linearized muffin-tin orbital calculation to
determine Bloch functions for the Hartree one-particle Hamiltonian, and from these obtains maximally local-
ized Wannier functions, using a method proposed by Marzari and Vanderbilt. Within this Wannier basis all
relevant one-particle and two-particle Coulomb matrix elements are calculated. The resulting second-quantized
multiband Hamiltonian withab initio parameters is studied within the simplest many-body approximation,
namely the unscreened, self-consistent HFA, which takes into account exact exchange and is free of self-
interactions. Although thed bands sit considerably lower within HFA than within the local~spin! density
approximation LSDA, the exchange splitting and magnetic moments for ferromagnetic Fe, Co, and Ni are only
slightly larger in HFA than what is obtained either experimentally or within LSDA. The HFA total energies are
lower than the corresponding LSDA calculations. We believe that this same approach can be easily extended to
include more sophisticatedab initio many-body treatments of the electronic structure of solids.

DOI: 10.1103/PhysRevB.68.245102 PACS number~s!: 71.10.Fd, 71.15.Ap, 71.15.Mb, 71.20.Be
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I. INTRODUCTION

In this paper we use a quantum-chemical approach
present unscreened Hartree-Fock approximation~HFA! cal-
culations of metallic Fe, Co, Ni, and Cu. Because our
proach uses localized Wannier functions, it is a Hubbard-
method that should be easily generalized to include m
sophisticated many-body treatments of correlation effe
Nonetheless, it is useful to understand what a HFA met
would give before moving on to consider correlation.
place these calculations in context it is useful to briefly
view the status of electronic-structure calculations in soli

Most existingab initio ~first-principles! methods for the
numerical calculation of the electronic properties of sol
are based on density-functional theory~DFT!,1 which in
principle is exact and properly takes into account many-b
effects involving the Coulomb interaction between the el
trons; for an overview on the present status of DFT we re
to the books in Refs. 2 and 3. But, in general, the functio
dependence of the kinetic energy and the exchange and
relation part of the Coulomb~interaction! energy on the elec
tron density are not known explicitly, and hence addition
approximations and assumptions are necessary. A w
established additional approximation is the local-density
proximation ~LDA !4 ~or local spin-density approximatio
LSDA for magnetic systems!, which assumes that th
exchange-correlation potential depends locally on the e
tronic density. Even then, the functional dependence of
exchange-correlation energy on the density is not known
general, and it is usually necessary to make an ansatz fo
exchange-correlation functional, which is based on the
mogeneous electron gas. The LDA goes beyond the simp
electron-gas approximation, the HFA, in that correlation
ergy is explicitly taken into account. On the other hand,
0163-1829/2003/68~24!/245102~11!/$20.00 68 2451
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HFA exchange potential is nonlocal, i.e., the potential
point r depends on the density at all other positionsr 8, an
effect which the LDA exchange potential misses. Howev
in practice LDA treatments are simpler than HFA calcu
tions, because local exchange is easier to treat than non
exchange, and are usually in better agreement with exp
ment. Therefore, DFT~LDA-like ! treatments have been fa
more common than HFA during the past few decades, e
in quantum chemistry~with a long tradition of methods
based on HFA!.

Ab initio DFT-LDA calculations have been very succes
ful for many materials and ground-state properties such
crystal structure, ground state and ionization energy, lat
constant, bulk modulus, crystal anharmonicity,5 magnetic
moments, and some photoemission spectra. However, t
are also important limitations. For example, LDA predicts
band gap for semiconductors that is almost a factor of t
too small, while the HFA overestimates the band gap
semiconductors.6 In addition, for many strongly correlate
~narrow energy band! systems such as high-temperature s
perconductors, heavy fermion materials, transition-metal
ides, and 3d itinerant magnets, the LDA is usually not su
ficient for an accurate description~predicting metallic rather
than semiconducting behavior, failing to predict quasiatom
clike satellites, etc!.

Therefore, it is important to look forab initio methods
and improvements that go beyond LSDA. Recently th
have been several attempts to combineab initio LDA calcu-
lations with many-body approximations.7–16 All of these re-
cent developments add local, screened Coulomb~Hubbard!
energiesU between localized orbitals to the one-particle p
of the Hamiltonian obtained from anab initio LDA band-
structure calculation, but differ in how they handle the c
relation part. What these approaches have in common is
they have to introduce a HubbardU as an additional param
©2003 The American Physical Society02-1
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eter and hence are not really first-principles treatments.
though they use a LDAab initio method to obtain a realistic
band structure, i.e., single-particle properties, Coulomb m
trix elements for any particular material are not known, a
the HubbardU remains an adjustable parameter. In additi
since some correlations are included in LDA as well as
the HubbardU, it is unclear how to separate the two effec
and double counting of correlation may be included in th
approximations.

Other attempts to improve LDA include gradient corre
tions, nonlocal density schemes, self-interaction correctio
and the GW approximation~GWA!, as defined below. Gra
dient corrections17 approximately account for the fact tha
the electron density is not constant butr dependent in an
inhomogeneous electron gas and use an exchange-corre
potential containing¹n(r ) terms. So-called generalized gr
dient approximation~GGA! functionals ~e.g., Ref. 18! are
now routinely used. The nonlocal density schemes go
yond LDA by considering that the exact exchang
correlation potentialVxc(r ) cannot depend only on the den
sity n(r ) at the same positionr but should depend also o
the electron density at all other positionsn(r 8). Usually the
new ansatz for the functional of the exchange-correlation
ergy contains the pair correlation function or the interact
of the electrons with the exchange-correlation hole.17,19 The
exact exchange~EXX! formalism20–23 cancels the spuriou
~unphysical! electronic self-interaction present in LDA an
gradient corrected exchange functionals. A standard me
for ab initio calculations of excited states is the GWA.24,25

Denoting the one-particle Green function byG and the
screened interaction byW, the GWA is an approximation fo
the electronic self-energyS'GW, which is correct in linear
order inW and can diagrammatically be represented by
lowest-order exchange~Fock! diagram. The one-particle
Green functionG is usually obtained for the effective one
particle LDA Hamiltonian.

The HFA has long been a standard electronic-struc
method. Despite its many manifest defects, it is still imp
tant to know what such a calculation would predict befo
turning to more sophisticated approaches for correlation
fects. In this paper we provide HFA calculations for Fe, C
Ni, and Cu using an approach that we hope will be ea
generalizable to more sophisticated treatments of correla

This is done by using the following steps:
~1! Perform a conventional, self-consistent, band-struct

calculation for an effective one-particle Hamiltonia
namely, the Hartree Hamiltonian, to obtain a suitable ba
set of Bloch functions.

~2! By taking into account only a finite numberJ of bands
one chooses a truncated one-particle Hilbert space.
Marzari-Vanderbilt26 algorithm is then used to construct
maximally localized set of Wannier functions, which sp
the same truncated one-particle Hilbert space.

~3! All one-particle~tight-binding! and two-particle~Cou-
lomb! matrix elements of the Hamiltonian within this Wan
nier function basis are calculated.

~4! The resulting electronic many-body Hamiltonian
second quantization with parameters determined from
principles is studied within the HFA.
24510
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We use the ‘‘linear muffin-tin orbital’’~LMTO! method27

within the ‘‘atomic-sphere approximation’’~ASA!28 to per-
form the band-structure calculation for the Hartree Ham
tonian in first quantization. The second step of construct
localized Wannier functions is important, since then both
tight-binding and Coulomb matrix elements should be i
portant only on-site and for a few neighbor shells~the most
natural mapping to standard Hubbard-like models!. The di-
rect Coulomb matrix elements of the maximally localiz
Wannier basis are rather large, about 20 eV in magnitu
Our results are compared with those obtained from a s
dard LSDA calculation.2,3,29,30Although the 3d bands and
the 4s band overlap in the LSDA approximation, our un
screened HFA calculations give 3d bands that lie consider
ably lower ~between 10 and 20 eV! than the 4s band. The
HFA correctly predicts ferromagnetism for the ferromagne
metals Fe, Co, and Ni and no magnetism for Cu, but wit
much larger exchange splitting between majority and min
ity 3d bands than obtained within LSDA and with a slight
larger magnetic moment per site than obtained experim
tally or within LSDA. The total energy is lower in HFA than
in LSDA. The LSDA results for metals are probably mo
reliable than our HFA results, which lack important scree
ing and correlation effects. In order for our method to
beyond LSDA we would need to use better many-body me
ods than the~unscreened! HFA, which should be possible
within our scheme.

To the best of our knowledge we do not know of a
other published HFA results~band structure, density o
states, magnetism, magnetic moment, total energy, etc.! for
the 3d ferromagnets Fe, Co, and Ni, unless it was implici
applied to these materials for schemes like the local ansa31

where HFA results serve as an input to higher-order calc
tions. This is not surprising since the HFA has, from ve
early on, been viewed as a poor approximation for met
For example, when applied to the homogeneous electron
~as the simplest model of an infinite metallic system!, the
HFA has well-known Fermi edge singularities.32,33 These
lead, in particular, to a vanishing density of states~DOS! at
the Fermi energy, which is, of course, unphysical. This u
physical feature, which is an effect of the long-range nat
of the ~unscreened! Coulomb term in the nonlocal exchang
potential, usually prevails in actual HFA calculations for re
metals,34 though sometimes this singularity is hard to see
actual HFA results.35 In our calculations the nonlocality is
handled through the calculation of expectation values~matrix
elements of the density matrix!, which makes Hartree-Fock
~HF! calculations as easy as Hartree calculations. Furt
more, because of our localized Wannier basis, we only k
on-site and next neighbor Coulomb and exchange matrix
ements. Hence our calculations have an effective sh
ranged Coulomb interaction. Although longer-range Co
lomb matrix elements are small in our calculations, whi
is why we truncate them, it is possible that if all of the
were kept to infinite distances that they could add up to g
Fermi edge singularities~which are due to the long-range
nature of the bare Coulomb interaction! and other standard
anomalies. Correlation or screening would quickly k
these effects.
2-2
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UNSCREENED HARTREE-FOCK CALCULATIONS FOR . . . PHYSICAL REVIEW B68, 245102 ~2003!
The approximation closest to HF is the EX
formalism20–23 mentioned earlier. The method was first a
plied to atoms by Talman and Shadwick.21 Later, the method
was recognized as a DF method with EXX energy,36 and
applied to Si and Ge by Bylander and Kleinman in fram
work of the pseudopotential method.37 The EXX method is
different from the LDA only in that the EXX energy,23 rather
than the LDA exchange energy, is used; thus, LDA corre
tions are still present. The EXX energy, which correspond
the Fock term in the HFA, is treated as a functional of el
tron density and the method is also~like HF! self-interaction-
free. Although the EXX would appear to be very similar
HF, the EXX-only method,38,39 which does not include any
correlation, gives the dispersion of noninteracting electr
instead of the HF dispersion when applied to the homo
neous electron gas, while their total energies are exactly
same. For atoms the EXX-only method gives total energ
that agree well with HF. Due to these similarities, we w
compare our results with EXX where possible. One sho
note, however, that most EXX calculations include a lo
correlation potential.

The paper is organized as follows. In Sec. II, we brie
summarize some basic notation, give the Hamiltonian in fi
and second quantization, and describe our LMTO-Hart
calculations and our Wannier basis functions. Results for
matrix elements, in particular, the direct Coulomb and
change matrix elements are given in Sec. III; we also co
pare these results with calculations of the Slater integr
The application of the~unscreened! HFA to the multiband
Hamiltonian in second quantization is the subject of Sec.
For an interpretation of the results we compare the numer
HFA results obtained for the crystal with previous atom
HFA results and with numerical and analytical results fo
simplified local atomic model in Sec. V. A comparison wi
the more standard LSDA as well as EXX results follows
Sec. VI, before the paper closes with a short discussion.

II. HAMILTONIAN AND BASIS FUNCTIONS

A system ofNe interacting~nonrelativistic! electrons can
be described by the Hamiltonian

H5T1V1W5(
i 51

Ne pi
2

2m
1(

i 51

Ne

V~r i !1(
i . j

e2

ur i2r j u
. ~1!

The first partT is the kinetic energy of the electrons. Th
V(r ) describes the external one-particle potential. The
malism of ‘‘second quantization,’’ automatically accounts f
the antisymmetry through the fermion anticommutation re
tions. In second quantization the full many-body Ham
tonian can be written as:

H5 (
i , j ,s

t i j cis
† cj s1

1

2 (
i , j ,k,l ,s,s8

Wi j ,klcis
† cj s8

† cks8cls .

~2!

Here i , j ,k,l denote a complete set of one-particle orbi
quantum numbers ands,s8 are the spin quantum number
The statesu i & and the corresponding wave functionsw i(r )
5^r u i & form a basis of the one-particle Hilbert space. T
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matrix elements in Eq. 2 of course depend on the o
particle basis$u i &% that is chosen. But because of the com
pleteness relation the physical results should not depend
the choice of the one-particle basis. Because of the lat
periodicity an obvious choice for a one-particle basis is
Bloch basis$unk&%; then the orbital one-particle quantum
numbersn,k are the band indexn and the wave numberk
~within the first Brillouin zone!. In practice, one can work
only on a truncated, finite-dimensional one-particle Hilb
space. Here the truncation consists of including only a fin
number of bands and a set ofk values from a discrete mes
in k space. But, because the Bloch states are delocalize
very large number of Coulomb matrix elements~depending
on four quantum numbers! between all possiblek states
would have to be calculated. Therefore, it seems that a m
appropriate basis would be to use well localized wave fu
tions, where it is expected that a short-range tight-bind
assumption will hold, i.e., the on-site and the intersite ma
elements for only a few neighbor shells are sufficient. Wa
nier states~when maximally localized! are such wave func-
tions. The Wannier states are related to the Bloch state
the unitary transformations:

wRn~r !5^r uRn&5
1

N (
k

e2 ikRcnk~r !,

ucnk&5(
R

eikRuRn&. ~3!

Now our strategy is the following:
~i! Perform a traditional band-structure calculation for

effective one-particle HamiltonianHeff with lattice periodic-
ity to obtain a Bloch basis of the Hilbert space. Only a fin
number of band indices will be considered and the calcu
tions will be done for a discretized, finite mesh ink space,
i.e., we will work only on a reduced, truncated Hilbert spac

~ii ! Determine well-localized Wannier functions spanni
the same~truncated! Hilbert space as the Bloch basis fro
the canonical transformation~3! described above.

Of course, the important energy bands~and corresponding
band indices! are those that determine the electronic prop
ties of the system, i.e., the bands near to the Fermi le
Because the Hilbert space is truncated, we no longer w
with a complete basis set. Hence, it is important to start fr
Bloch functions obtained from a band-structure calculat
for a well-chosen effective one-particle Hamiltonian. T
simplest choice would be the bare one-particle poten
V(r ). However, without any Coulomb repulsion the 3d
states become very strongly bound atomiclike~core! states,
which would be pushed well below the Fermi energy, a
therefore the corresponding Bloch eigenfunctions are no
good starting point to describe the electronic bands clos
the Fermi level. Because the Hilbert space is truncated,
extremely important to start from a band HamiltonianT
1Veff that gives eigenfunctions as close as possible to th
which are expected to form the relevant many-body state
the interacting system. The bare one-particle potential is c
sequently a bad choice. Therefore, we choose the Har
Hamiltonian, which already accounts for effects of the Co
2-3
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TABLE I. Some properties of the lowest eight maximally localized Wannier functions of Fe.

n 0 1 2 3 4 5 6 7

( lCl
0n 0.9761 0.9765 0.9596 0.9800 0.9773 0.8754 0.8731 0.8763

(RCl 50
Rn 0.0019 0.0018 0.0081 0.0019 0.0017 .2224 0.2381 0.2265

(RCl 51
Rn 0.0955 0.0726 0.1797 0.0611 0.0728 .5480 0.5509 0.5347

(RCl 52
Rn 0.9026 0.9256 0.8121 0.9370 0.9255 .2295 0.2110 0.2388
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lomb interaction in the mean-field approximation. Therefo
the eigenenergies~energy bands! will be about the right mag-
nitude and the resulting basis functions can be expected t
more suitable in the energy regime around the Fermi le
Then the Bloch basis is obtained by solving the one-part
Schrödinger equation

F p2

2m
1V~r !1VH~r !Gcnk~r !5«n~k!cnk~r !, ~4!

where the Hartree potential is given by

VH~r !5E d3r 8
e2n~r 8!

ur2r 8u
. ~5!

Since the only purpose in solving the effective one-parti
Schrödinger Eq.~4! is the construction of a suitable basis s
of Bloch functions, we will not make use of the eigenen
gies«n(k) obtained in Eq.~4!. Note that the Hartree poten
tial, and hence our basis, is independent of spin. Never
less we can~in the following! expand the spin dependent H
Hamiltonian in this basis.

For the materials of interest we performed a se
consistent Hartree band-structure calculation. Besides
nuclear charge we used the~experimentally! known results
for the lattice structure~bcc for Fe, fcc otherwise; Co shoul
actually be hexagonal! and for the lattice constant as inpu
For the band-structure calculation we used the LMTO-A
method of Refs. 27 and 28. We have used the frozen c
approximation,28 i.e., only treated the valence electrons
actual bands, while leaving the core electrons ‘‘frozen.’’ F
the radius of the overlapping muffin-tin spheres, the Wign
Seitz radiusS, we used:S52.662a0 for Fe, S52.621a0 for
Co, S52.602a0 for Ni and S52.669a0 for Cu ~Ref. 28!.
Within the muffin-tin spheres the potential and wave fun
tions are expanded in spherical harmonics with a cu
l max52, i.e.,s, p, andd orbitals are included, which limits the
calculation to nine bands for one atom per unit cell.

In Ref. 40, we describe how maximally localized Wann
functions can be calculated from LMTO Bloch wave fun
tions using a method proposed by Marzari and Vanderb
which is described in detail in Ref. 26. The Wannier fun
tions are admixtures having different angular contributio
(3d, 4s, 4p). Since the original Bloch functions from whic
the Wannier functions are constructed were given in term
a spherical harmonics expansion, the new Wannier funct
~and their contribution in each individual muffin-tin spher!
can also be decomposed into these spherical harmonics
tributions
24510
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L

$fn l~r !AL
Rn1ḟn l~r !BL

Rn%YL~ r̂ !. ~6!

Here, thefn l(r )’s are normalized radial basis functions an
ḟn l(r ) are their energy derivatives for an energyEn l ; this is
a standard notation in the LMTO method~see Ref. 28!. One
can then calculate the weight of the contributions to the W
nier function ~centered at0) within the different muffin-tin
spheres

^wnuwn&R[E
R
d3r uwn~r !u25E

0
d3r uwn~R;r !u2, ~7!

and one can also decompose this into the differentl contri-
butions according to

~8!

For the 3d system iron these quantities are tabulated in Ta
I. The first line is the weight̂wnuwn&0 in the center muffin
tin. Between 88 and 98 % of the total weight of the Wann
functions is to be found already within the center muffin t
this shows how well localized our Wannier functions a
with the lowest five functions having values of more th
95%. Rows 2–4 in this table indicate the differentl contri-
bution or l character of the Wannier functions. One sees t
the optimally localized Wannier functions are not pure with
their l character, but the lowest five Wannier functions~0–4!
still have mainly l 52 (3d) character. Higher band-inde
states~which are slightly less well localized according to ro
1! are admixtures that have mainlyl 51 (4p) character
~about 50%!, but also a considerable amount ofl 50 (4s)
and l 52 (3d) character. Corresponding results for the oth
3d systems Co, Ni, and Cu are similar and, therefore,
repeated here. Our detailed results are given in Ref. 30.

III. ONE PARTICLE AND COULOMB
MATRIX ELEMENTS

From the optimally localized Wannier functions we calc
late the one-particle matrix elements

t125E d3r w1* ~r !F2
\2

2m
“

21V~r !Gw2~r !, ~9!

and the Coulomb matrix elements of the Hamiltonian
2-4
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TABLE II. On-site direct and exchange Coulomb matrix elements between Wannier functions for F
energies are in eV’s.

Unm 0 1 2 3 4 5 6 7 8

0 22.42 20.90 20.10 20.96 20.86 14.16 13.32 13.96 13.5
1 20.90 23.04 19.95 21.55 21.53 14.07 13.54 13.58 14.1
2 20.10 19.95 20.77 20.05 19.83 12.95 13.46 13.37 13.2
3 20.96 21.55 20.05 23.27 21.67 13.46 14.05 13.98 13.9
4 20.86 21.53 19.83 21.67 22.99 13.71 13.28 14.25 14.1
5 14.16 14.07 12.95 13.46 13.71 13.67 9.45 9.58 9.64
6 13.32 13.54 13.46 14.05 13.28 9.45 13.52 9.27 9.50
7 13.96 13.58 13.37 13.98 14.25 9.58 9.27 13.75 9.65
8 13.50 14.15 13.22 13.98 14.12 9.64 9.50 9.65 13.8

Jnm 0 1 2 3 4 5 6 7 8

0 22.42 0.84 0.61 0.75 0.99 0.86 0.73 0.81 0.42
1 0.84 23.04 0.77 0.88 0.84 0.70 0.51 0.48 0.86
2 0.61 0.77 20.77 0.88 0.70 0.96 0.93 0.92 0.60
3 0.75 0.88 0.88 23.27 0.82 0.33 0.78 0.64 0.69
4 0.99 0.84 0.70 0.82 22.99 0.52 0.46 0.75 0.83
5 0.86 0.70 0.96 0.33 0.52 13.67 0.58 0.56 0.57
6 0.73 0.51 0.93 0.78 0.46 0.58 13.52 0.45 0.56
7 0.81 0.48 0.92 0.64 0.75 0.56 0.45 13.75 0.55
8 0.42 0.86 0.60 0.69 0.83 0.57 0.56 0.55 13.81
w
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W12,345E d3r d3r 8 w1* ~r ! w2* ~r 8!

3
e2

ur2r 8u
w3~r 8! w4~r !. ~10!

Here we use the abbreviated notation 1 to meanR1n1 and 2
to mean forR2n2, etc. In Ref. 40, we have described ho
these matrix elements can be evaluated. Concerning the
lomb matrix elements, we have used the two different
merical algorithms proposed in Ref. 40 for their evaluatio
namely the FFT algorithm and a spherical expansion a
rithm. The latter method makes use of the fact that~in each
muffin-tin sphere! the Wannier functions are explicitly give
as linear combinations of products of spherical harmon
and a radial wave function. The expansion

1

ur2r 8u
5 (

k50

`
4p

2k11

r ,
k

r .
k11 (

m52k

k

YK* ~ r̂ 8! YK~ r̂ ! ~11!

(K5$k,m%) makes it possible to express the on-site Co
lomb integrals as one-dimensional integrals over product
the radial functions and Gaunt coefficients. The results
tained by this algorithm and by the independent FFT al
rithm agree within errors of atmost 1%. Since our basis fu
tions are well localized, we may truncate the tight-bindi
and Coulomb matrix elements. We only consider on-site
next neighbor matrix elements, by next neighbor Coulo
matrix elements, we mean matrix elements for which
four sites~appearing in the indices! are~pairwise! maximally
a next neighbor distance apart.
24510
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Results for the on-site direct and exchange Coulomb m
trix elements between the optimally localized Wannier fun
tions are given in Table II for iron. The direct Coulomb in
tegralsUnm5Wnm,mn between the Wannier states with th
lowest five band indices (n,mP$0, . . . ,4%), which accord-
ing to Table I have mainly 3d character are rather large, u
to 23 eV for Fe. Within the 3d-like bands the interband
direct Coulomb matrix elements are of the same magnit
as the intraband matrix elements. The matrix elements
tween 3d states and 4sp states are considerably smaller,
the magnitude of 13–14 eV. For electrons in 4sp states
(n,mP$5, . . . ,9%) the direct intraband Coulomb matrix ele
ments are again of the order of 13–14 eV, but the interb
matrix elements are slightly smaller, about 9 eV. The e
change matrix elementsJnm5Wnm,nm are always much
smaller, usually less than 1 eV~for nÞm). The correspond-
ing results for the other 3d systems investigated~Co, Ni, and
Cu! are very similar.30

For the five states with predominant 3d character we have
calculated the averages of the on-site direct and excha
Coulomb matrix elements

U[
1

25 (
mm8

Wmm8m8m , ~12!

J[
1

20 (
mÞm8

Wmm8mm8 , ~13!

as well as the averages of the absolute values of the nea
neighbor ~NN! and next-nearest-neighbor~NNN! hopping
matrix elements
2-5
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tNN(N)[
1

25 (
n,m

utRnmu. ~14!

The results obtained thereby for the four transition me
under consideration are shown in Table III. TheU values
vary between 21 eV for Fe and 25 eV for Cu, theJ values are
smaller than 1 eV and the hopping matrix elements are of
magnitude 0.5–0.7 eV for NN and 0.1–0.2 eV for NNN, a
further on decrease with increasing distance.

We have also evaluated the Slater integrals:41

Fk[e2E dr r 2E dr8 r 82 uRl 52~r !u2
r ,

k

r .
k11

uRl 52~r 8!u2,

~15!

whereRl 52(r ) is a radial~atomic! d-wave function~obtained
by solving the Schro¨dinger equation for a radial symmetr
potential, for instance!. Note that only the three integralsF0,
F2, and F4 are required to determine all the Coulom
d-matrix elements. Using the radiald-wave function ob-
tained from the Hartree calculation we obtain the followi
values for the Slater integrals of the four 3d systems:F0

521.62 eV for Fe, 23.18 eV for Co, 24.69 eV for Ni, an
26.27 eV for Cu. This means that the Slater integralsF0 are
rather good estimates of our~averaged! Coulomb matrix el-
ements. These values are also in agreement with older re
obtained in calculations for 3d atoms.42 In Table IV we show
our Fk values for the four 3d crystals and compare them
with corresponding atomic calculations from Ref. 42. Ob
ously, there is fairly good agreement between these ato
calculations and our results.

TABLE III. Averaged on-site Coulomb, exchange, neare
neighbor, and next-nearest-neighbor hopping matrix elements
the four 3d systems; energies are in eV.

U J tNN tNNN

Fe 21.1 0.81 0.59 0.24
Co 22.6 0.87 0.55 0.10
Ni 22.6 0.88 0.75 0.11
Cu 24.5 0.94 0.80 0.12

TABLE IV. Slater integralsFk ~in eV! for the 3d systems Fe,
Co, Ni, Cu as obtained by our calculations and within an ear
atomic calculation.42

F0 F2 F4

Fe ~crystal! 21.62 9.61 5.91
Fe ~atom @42#! 23.76 10.96 6.81
Co ~crystal! 23.18 10.31 6.34
Co ~atom @42#! 25.15 11.58 7.20
Ni ~crystal! 24.69 11.00 6.77
Ni ~atom @42#! 26.53 12.20 7.58
Cu ~crystal! 26.27 11.72 7.23
Cu ~atom @42#! 27.90 12.82 7.96
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IV. UNSCREENED HARTREE-FOCK APPROXIMATION

After we have determined the matrix elements within o
restricted basis set of nine maximally localized Wann
functions~per site and spin!, we have a Hamiltonian in sec
ond quantization of the form

H5(
12s

t12c1s
† c2s1

1

2 (
1234ss8

W12,34c1s
† c2s8

† c3s8c4s

~16!

for which all the matrix elements are known from first pri
ciples. The simplest approximation one can now apply is
HFA, which replaces the many-body Hamiltonian by the
fective one-particle Hamiltonian

HHF5(
12s

~ t121S12,s
HF !c1s

† c2s , ~17!

with

S12,s
HF 5S12

Hart1S12,s
Fock5 (

34s8
@W13,422dss8W31,42#^c3s8

† c4s8&.

~18!

Here the expectation values^c1s
† c2s& have to be determined

self-consistently for the HF Hamiltonian~17!. Note that the

FIG. 1. Hartree-Fock band structure and density of states~per
spin! of Fe; the full line shows the majority~spin up!, the dashed
line shows the minority spin component.

FIG. 2. Hartree-Fock band structure and density of states~per
spin! of Co; the full line shows the majority~spin up!, the dashed
line shows the minority spin component.
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Fock ~exchange! term is spins dependent and may, there
fore, give rise to magnetic solutions.

The Hartree-Fock results for the four materials of inter
are shown in Figs. 1–4. We show the effective HF ba
structure and its density of states~DOS!. In our HF calcula-
tions there are no singularities~or a vanishing DOS! at the
Fermi level since we start from a localized description a
consider the Coulomb matrix elements only up to next nei
bors. Therefore, we implicitly truncate the Coulomb intera
tion in real space and in practice work with an effecti
short-ranged interaction. Within HFA the main part of the 3d
bands lies between 18 and 22 eV below the Fermi level
is separated from the 4sp bands. We find magnetism in HFA
for Fe, Co, and Ni in agreement with experiment. The fi
majority spind bands are about 20 eV below the Fermi e
ergy and are completely filled. But the partially filled mino
ity d bands have two~for Fe!, three~for Co!, and four~for
Ni! filled bands between218 and215 eV, and the rest are
around and above the Fermi level. The resulting magn
moments are shown in Table V. For copper no magnet
and exchange splitting of the 3d bands is obtained, but th
~spin degenerate! 3d bands are at about 22 eV below th
Fermi level and separated from the 4sp bands. If we com-
pare these results with the results of the simple Hartree
proximation, which are qualitatively similar to LDA result
~as shown, e.g., in Ref. 29, or in our detailed results30!, we

FIG. 3. Hartree-Fock band structure and density of states~per
spin! of Ni; the full line shows the majority~spin up!, the dashed
line shows the minority spin component.

FIG. 4. Hartree-Fock band structure and density of states~for
both degenerate spin directions! of Cu.
24510
t
d

d
-

-

d

-

ic
m

p-

see that the exchange term has two effects: It produce
exchange splitting and the possibility of magnetic solutio
and it draws the 3d bands energetically down by an amou
of about 20 eV. Compared with experiment the HFA over
timates magnetism and leads to overly large values for
magnetic moment, see Table V. This is consistent w
Heisenberg or Ising model studies where the mean-field
proximation HFA also has the tendency to overestimate m
netism and magnetic solutions. However, the reason why
3d bands lie so far below the Fermi level and the 4sp band
in HFA has nothing to do with the existence and overestim
tion of magnetism. This can be seen already from the n
magnetic system Cu for which the~fully occupied! 3d bands
also lie at about 22 eV below the Fermi level~see Fig. 4!. To
demonstrate this also for a system with a partially filledd
band we have done a nonmagnetic Hartree-Fock calcula
for Co ~by forcing equal occupation for both spin directions!.
The results for the band structure and the DOS are show
Fig. 5. We observe again that the main part of the 3d bands
are well below the 4s bands and Fermi level; note the hy
bridization gap caused by the unoccupied 3d bands above
the Fermi level.

V. COMPARISON WITH ATOMIC
HARTREE-FOCK RESULTS

We have seen in the preceding section that one effec
the HFA calculation, when compared with the Hartree cal
lation, is the shift of the 3d bands down~about 20 eV below
the Fermi level and about 8–10 eV below the bottom of
4sp band!. This shift of thed bands is about the same ener
as the Coulomb matrix elementsU, and roughly agrees with
earlier atomic Hartree-Fock calculations,42,43 where the 3d
states are also about 10 eV below the 4s states.

FIG. 5. Nonmagnetic Hartree-Fock band structure and den
of states~for both degenerate spin directions! of Co.

TABLE V. Spin magnetic moments (mB /atom) from different
methods. The EXX results are from Ref. 45.

HF EXX LSDA Experiment

Fe 2.90 3.27 2.18 2.22
Co 1.90 2.29 1.58 1.72
Ni 0.76 0.68 0.58 0.62
2-7
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Because the intersite hopping matrix elements in Table
are much smaller than theU values one may consider a
expansion int/U, with the zeroth-order approximation t
completely neglect hopping. Doing this, we have perform
a quasi-atomic HFA calculation for Co, by including only th
on-site one-particle and two-particle~Coulomb! matrix ele-
ments. The results are summarized in Fig. 6; the degene
of the different levels is also indicated. In the paramagne
case, we find that the 3d bands are below the 4s bands~at
the Fermi level! by about 6 to 7 eV, which is in rough agree
ment with the earlier atomic HFA results.42,43 The splitting
between the occupied and unoccupied 3d states is about 23
eV, which is the on-siteU for Co. Magnetic HFA solutions
are also found in the atomic limit for Co, as shown in t
right panel of Fig. 6. The majority-spin 3d states (T2g and
Eg) are now completely filled and energetically lie low
than the corresponding nonmagnetic HFA states. But o
the ~threefold degenerate! T2g states of the minority-spin
electrons are filled whereas theEg states of the minority
electrons are empty~and now even 26 eV above the occupi
d states!. The additional energetical shifts between the oc
pied 3d states in the paramagnetic and ferromagnetic ato
HFA solution are due to the exchange matrix elementsJ.

This behavior can qualitatively be understood within t
framework of the following simple, analytically solvabl
model. Similar to the numerical HFA results presented a
discussed above, we neglect all intersite one-particle~hop-
ping! and interaction matrix elements. Furthermore, we
sume that we have diagonalized the one-particle Hamilton
taking into account only the atomic 3d levels and assuming
that the on-site one-particle diagonal matrix elements«, the
Coulomb matrix elementsU, and the exchange matrix ele
mentsJ are equal, i.e., the 3d levels are degenerate in th
atomic limit with no crystal-field effects. Then the atom
part of the many-body Hamiltonian can be written as

H5(
is

« cis
† cis1

U

2 (
( is)Þ( j s8)

cis
† ciscj s8

† cj s8

1
J

2 (
iÞ j ,ss8

cis
† cj s8

† cis8cj s , ~19!

FIG. 6. Energy eigenvalues from quasiatomic HFA calculati
The numbers in brackets indicate the degeneracy.
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wherei , j P$0, . . . ,4% denote the five~degenerate! 3d states.
Assuming that no symmetry breaking occurs and that o

diagonal expectation values^cj s8
† cis& for ( is)Þ( j s8) van-

ish, the standard HFA decoupling leads to the following
fective one-particle Hamiltonian

H5(
is

« is
HFAcis

† cis , ~20!

where

« is
HFA5«1UF(

j s8
^cj s8

† cj s8&2^cis
† cis&G2J(

j Þ i
^cj s

† cj s&.

~21!

Obviously, in this atomic HFA treatment starting from loca
ized orbitals the self-interaction is exactly canceled. In
simple Hartree approximation~HA! the exchange decou
plings are neglected, which means that all the decoup
terms with the negative sign would not occur. Therefore,
corresponding Hartree one-particle energies are given by

« is
HA5«1U(

j s8
^cj s8

† cj s8&. ~22!

Comparing this result with the Hartree-Fock one-particle
ergies, we find that the HF occupied levels are shifted dow
wards by an amount of

U^cis
† cis&1J(

j Þ i
^cj s

† cj s& ~23!

relative to the Hartree levels. Momentarily settingJ50, we
see that forN occupied levels the Hartree approximatio
gives the one-particle energies

« is
HA5«1NU, ~24!

whereas the HFA yields

« is
HFA5«1~N21!U. ~25!

The occupied Hartree-Fock one-particle energies are lo
than the corresponding Hartree one-particle energies byU,
which is a consequence of the artificial and unphysical s
interaction still present in the Hartree approximation that
exactly canceled in Hartree-Fock. This also explains why
Hartree-Fock bands are shifted downwards from the Har
bands by an energy of the amountU. One also sees from thi
simple atomic-limit Hartree-Fock model that the energy d
ference between the highest occupied and the lowest u
cupied effective Hartree-Fock one-particle energies is ag
essentiallyU, which is once more in agreement with ou
numerical results for the crystal and for the atom~cf. Fig. 6!.
Note that we have ignoredUsd interactions, which cause a
additional shift ofd bands below thes bands by about an
additional 10 eV in the full HFA calculations.

Taking into account the exchange interactionJ again and
denoting byNs the number of occupied states with spins
~i.e., N5N↑1N↓) one obtains in HFA

.

2-8
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«s
HFA5«1~N21!U2~Ns21!J. ~26!

Then the total energy in HFA is given by

Etot5N«1
N~N21!

2
U2(

s

Ns~Ns21!

2
J. ~27!

For the total energy we have added the necessary corre
term to the sum of the occupied energy levels~much like the
double counting term that shows up in band-structure ca
lations!. Now for partially filled 3d shells the occupation o
the different spin directions may be different. DenotingM
5N↑2N↓ we obtain for the total energy

Etot5N«1
N~N21!

2
U2

N21M2

4
J1

N

2
J. ~28!

The magnetic (MÞ0) total energy is lower than the non
magnetic~consistent with Hund’s rules!.

Take once more Co with eight 3d electrons. The paramag
netic ~nonmagnetic! state has the occupationsN↓5N↑54
(N58 andM50). For this configuration~corresponding to
the left panel in Fig. 6! one obtains

Etot
(P)58«128U212J. ~29!

The Hund’s rule magnetic solution has 3d states of one spin
direction completely filled, i.e.,N↑55 and N↓53 (N58
andM52). This gives

Etot
(M )58«128U213J. ~30!

Therefore, the magnetic configuration~with a magnetic mo-
ment of 2 for the atom! is energetically more favorable byJ.
Note also the exchange splitting in the occupied energy
genvalues

«↓2«↑52J ~31!

and that our model would predict the unoccupied minor
spin E2g state to beU1J higher in energy than the corre
sponding occupied majority spin state.

The simple model in this section differs from the resu
shown in Fig. 6 in that we have replaced the full matrix ofU
andJ by scalar values ford states only~ignoring s-d inter-
actions, for example!. However, it captures all of the impor
tant physics without attempting to be completely quant
tive.

VI. COMPARISON WITH LSDA AND EXX RESULTS

For comparison with the HFA results described in Sec.
we have also performed a standard LSDA band-structure
culation with the LMTO-ASA method. We used the vo
Barth–Hedin exchange-correlation potential.44 Since these
results are very similar to those of Ref. 29, we do not rep
them here. Again, our detailed results are given in Ref.
For the magnetic systems Fe, Co, and Ni we obtain an
change splitting and the prediction of magnetic solutio
with magnetic moments shown in Table V, which are in b
ter agreement with experiment than the HFA results.

The energy spectra of the bands~DOS! are quite different
24510
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from the HFA. For example, the 3d bands now fall into the
same energy region as the 4sp bands, i.e., the LSDA result
are not so different from the Hartree results. This means
the exchange-correlation energy leads only to a small shif
the 3d bands downwards by atmost a few electron volts a
a smaller exchange splitting~also of the magnitude of 1 eV!.
On the other hand, in the LSDA calculations the se
interaction terms are not completely canceled, i.e., an~unre-
alistic! self-interaction is included, which may lead to 3d
bands that lie energetically too high, as discussed for
atomic limit in the preceding section.

To see the effect of correlations within LSDA, we hav
also performed an exchange-only calculation for Co, i
only the exchange part of the~local! exchange-correlation
potential44 was employed. The result is similar to the LSD
result, and the~majority! d bands lie only about 1 eV lowe
than within LSDA, i.e., very minimal when compared wit
the large drop in the full HFA. This exchange-only LSD
result also contains self-interactions, and their exact can
lation in the HFA is responsible for the large shift dow
wards of thed bands. Nevertheless, the LSDA result ind
cates that a possible effect of correlations is to shift thed
bands up relative to exchange-only calculations, and he
one would expect a similar effect if correlations could
added to the full HFA calculations.

One can also calculate the total energy in the Hartr
HFA, and LSDA approximations. The results obtained
the four materials of interest are shown in Fig. 7. We see
the total energy is always significantly lower in HFA than
the Hartree approximation, which is expected because
HFA uses a better variational wave function. The HFA to
energy is also lower than the LSDA, and the LSDA result
lower than the simple Hartree result. Because of the
known approximations that go into constructing LSDA, it
hard to guess ahead of time that this would be the ca
However, it is well known that the LSDA approximatio
produces a bad total exchange-correlation energy; the re
why such good agreement with experiment is found is t
relative exchange-correlation energies are nonetheless
sonably accurately calculated.

FIG. 7. Total ground-state energy~of the valence electrons! ob-
tained in Hartree approximation, LSDA, and HFA for the 3d tran-
sition metals Fe through Cu.
2-9
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We now turn to the comparison of our results with EX
calculations for 3d systems.23,45 This method, which is self-
interaction-free, uses the EXX energy23 instead of a LDA
exchange and then adds in a LDA correlation potential. L
the HFA the magnetic moments for Fe, Co, and Ni~see Table
V! are overestimated by EXX.45 Our HFA results for Fe
show the majority 3d bands about 20 eV below the Ferm
level ~Fig. 1!, whereas the EXX density of states~Fig. 2 in
Ref. 23! show these bands only about 10 eV below the Fe
level. The differences are probably due to the~LDA ! corre-
lations shifting the 3d bands upwards. This upward shift als
occurs with EXX1RPA ~random-phase approximation! re-
sults in Ref. 45. Here the LDA correlations present in EX
are replaced by RPA correlations and the 3d bands are found
in the region of the 4sp bands~similar to LDA!. It is likely
that the qualitative agreement between the HFA and E
results for Fe is due to the correct cancellation of se
interactions.

VII. DISCUSSION AND CONCLUSION

We have presented the results of~unscreened! HFA calcu-
lations for the 3d transition metals Fe, Co, Ni, and Cu. W
obtain magnetic solutions for Fe, Co, and Ni with~slightly!
too large magnetic moments when compared to experime
or LSDA results. The occupied HFA 3d bands lie about 20
eV below the Fermi level~and the Hartree result!, which is
also the magnitude of the splitting between occupied
unoccupied 3d bands and of the magnitude of the on-s
Coulomb matrix element~the ‘‘Hubbard’’ U). This down-
wards shift of the HFA 3d bands compared to the Hartre
and LSDA 3d bands can be understood as due to the s
interaction correction of HFA.

One may argue that these results are not surprising an
artifact of using the unscreened HFA. Ourab initio calcula-
tion of the direct Coulomb matrix elements yields large v
ues of the magnitude of 20 eV. HFA can be considered to
an approximation for the self-energy which is correct only
linear order in the Coulomb interaction. But for these lar
values of theU terms HFA is certainly not sufficient but on
has to apply better many-body approximations. One sho
apply systematic extensions of HFA, which within the sta
dard perturbational approach can be represented by~a resum-
mation of an infinite series of! Feynman diagrams, or on
can try to apply the recently so successful nonperturbatio
many-body schemes like ‘‘dynamical mean-field theor
~DMFT!46 or variational~Gutzwiller! approaches.47 The sim-
plest standard diagram series are the bubble diagrams
ing essentially to the ‘‘random-phase approximation’’~RPA!.
This means just a renormalization of the interaction line, i
the pure ‘‘naked’’ Coulomb interaction has to be replaced
a ‘‘dressed’’ interaction. Or in other words, the exchan
~Fock! contribution has not to be calculated with the ba
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Coulomb matrix elements but with screened Coulomb ma
elements. Probably the nonperturbational schemes
DMFT are also only applicable for screened Coulomb ma
elements.

We believe that the approach we have used for our H
calculations can easily be generalized to provide an appro
for combiningab initio and many-body methods for the ca
culation of the electronic properties of solids. The starti
point is a traditional band-structure calculation for an effe
tive ~auxiliary! one-particle Hamiltonian, which can be th
Hartree Hamiltonian. This yields, in particular, the eige
functions in the form of Bloch functions. Keeping only
finite number ofJ band indices restricts and truncates t
Hilbert space for further calculations. We use the Marza
Vanderbilt algorithm to construct maximally localized Wa
nier functions ~within the truncated one-particle Hilber
space!. All the one-particle~tight-binding! and two-particle
~Coulomb! matrix elements between these Wannier functio
can be calculated. The strong localization guarantees
only on-site matrix elements and near neighbor intersite m
trix elements have to be calculated. We are left with a ma
body Hamiltonian in second quantization but with para
eters determined from first principles for any given mater
which we have solved within the HFA but for which w
should also be able to solve by using more sophistica
many-body techniques. Our HFA approach is free from
problems of double counting of correlation effects and se
interaction and considers exchange contributions exactly
does not rely on assumptions based on the homogen
electron gas or a dependence on the local electron den
An inhomogeneous~lattice! electron system is considere
right from the beginning. Within the standard Feynman d
gram approach the most straightforward next step bey
HFA would be a summation of bubble diagrams leading t
renormalized~screened! Coulomb interaction. This would re
quire calculating the exchange contribution not with the b
but with a screened Coulomb interaction. To take into
count the effects of screening would require a calculation
the charge susceptibility and the~static! dielectric constant,
which could be done within a generalized Lindhard theo
for instance.
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