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Abstract. We propose and apply a combination of an ab initio (band-structure) calculation with a many-
body treatment including screening effects. We start from a linearized muffin-tin orbital (LMTO) calcula-
tion to determine the Bloch functions for the Hartree one-particle Hamiltonian, from which we calculate
the static susceptibility and dielectric function within the standard random phase approximation (RPA).
From the Bloch functions we obtain maximally localized Wannier functions, using a method proposed by
Marzari and Vanderbilt. Within this Wannier basis all relevant one-particle and unscreened and screened
Coulomb matrix elements are calculated. This yields a multi-band Hamiltonian in second quantization
with ab initio parameters, for which screening has been taken into account within the simplest standard
approximation. Then, established methods of many-body theory are used. We apply this concept to a
simple metal, namely lithium (Li). Here the maximally localized Wannier functions turn out to be of the
sp3-orbital kind. Furthermore, only the on-site contributions of the screened Coulomb matrix elements are
relevant, and a generalized, four-band Hubbard model is justified. The screened on-site Coulomb matrix
elements are considerably smaller than the band width because of which it is sufficient to calculate the
selfenergy in weak-coupling approximation. We compare results obtained within the screened Hartree-Fock
approximation (HFA) and within the second-order perturbation theory (SOPT) in the Coulomb matrix
elements for Li and find that many-body effects are small but not negligible even for this simple metal.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.15.Ap Basis sets (LCAO, plane-wave,
APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.) – 71.15.Mb
Density functional theory, local density approximation, gradient and other corrections – 71.20.Dg Alkali
and alkaline earth metals

1 Introduction

Most existing ab initio (first-principles) methods for the
numerical calculation of the electronic properties of solids
are based on density functional theory (DFT) [1–3]. But
as the functional dependence of the kinetic energy and
the exchange and correlation part of the Coulomb (in-
teraction) energy on the electron density are not known
explicitly, additional approximations are necessary. Here
the most common and successful method is the local den-
sity approximation (LDA) [4], which assumes that the
exchange-correlation potential depends locally on the elec-
tronic density and makes an ansatz for the exchange-
correlation functional, which is based on the homogeneous
electron gas. Such DFT-LDA calculations have been very
successful for many materials and ground-state proper-
ties such as crystal structure, ground state and ionization
energy, lattice constant, etc. However, there are also im-
portant limitations. For example, LDA predicts a band
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gap for semiconductors that is almost a factor of two too
small, and for many strongly correlated (narrow energy
band) systems such as high-temperature superconductors,
heavy fermion materials, transition-metal oxides, and 3d
itinerant magnets, the LDA is usually not sufficient for an
accurate description (predicting metallic rather than semi-
conducting behavior, failing to predict quasi-atomic-like
satellites, etc.). For such systems, better justified many-
body theories [5] have to be used, but these methods have
to be applied to a second quantized Hamiltonian.

Until recently such application of many-body meth-
ods was restricted to model Hamiltonians with adjustable
parameters for which at most order of magnitude esti-
mates were available. Therefore, the application of true
many-body methods and ab initio methods were dis-
tinct approaches in solid-state theory. But within the
past decade, there have been several attempts to combine
ab initio and many-body methods [6–13]. Most successful
in this respect has been the application of the “dynamical
mean-field theory” (DMFT) [14] for the treatment of the
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correlation problem; these LDA+DMFT approaches
[11–13] are reviewed in references [15,16]. Most of the
mentioned work starts from a standard DFT/LDA ab ini-
tio calculation, from which one obtains the one-particle
band structure. Then estimates on the local, screened
Coulomb (Hubbard) matrix elements U between local-
ized orbitals are made, for which the “constrained LDA”
(CLDA) [17,18] is usually used. The resulting (extended)
multi-band Hubbard model (with ab initio one-particle
bands and CLDA estimates for the Hubbard U’s) is then
treated within many-body approximations, either stan-
dard (diagrammatic) ones like second order perturbation
theory (SOPT) [7] or “fluctuation exchange approxima-
tion” (FLEX) [9] or the DMFT [14,15].

Another possibility to take into account many-body
effects beyond LDA and screening in ab initio electronic
structure calculations is provided by the GW approxima-
tion (GWA); [19] for recent reviews see references [20,21].
The GWA is an approximation for the selfenergy dia-
grammatically corresponding to the exchange contribu-
tion but with a dynamically screened interaction line. A
full GW calculation requires the knowledge of the fre-
quency dependent dielectric function and, therefore, of the
one-particle states over a large energy range [22]. Within
GWA the screened interaction is frequency dependent,
i.e. dynamic. Therefore, within GWA effective (extended)
Hubbard models with static, short ranged Coulomb ma-
trix elements (Hubbard U etc.) cannot be derived, one
automatically obtains a model with an effective dynami-
cal, frequency dependent interaction U(ω). Combinations
of GWA and DMFT have been developed and applied to
correlated systems like Ni only very recently [23].

In this paper we suggest and apply a slightly differ-
ent, alternative approach. As the LDA contains already
some aspects of (exchange and) correlations (in form of
the ansatz for the local exchange correlation potential)
and the correlations shall be treated in a better justified
many-body theory, we do not use the LDA at all, but
start from an ab initio Hartree calculation. The solution
of the effective one-particle Schrödinger equation yields
the Hartree band structure and the eigenstates (in the
form of Bloch functions). The eigenenergies (band struc-
ture) allow for a calculation of the static susceptibility
or the static dielectric function in the most simple ap-
proximation, namely the (static) random phase approx-
imation (RPA or generalized Lindhard approximation).
From the Bloch functions we can calculate maximally lo-
calized Wannier functions using an algorithm proposed
by Marzari and Vanderbilt [24]. Within these Wannier
functions one can calculate all one-particle (tight-binding)
matrix elements of the (second-quantized) Hamiltonian
and also – using the static dielectric function obtained
– the screened Coulomb (two-particle) matrix elements.
Then one has the Hamiltonian in second quantization in
form of a multi-band, generalized Hubbard model and can
apply many-body methods. This approach differs from
our earlier investigations [25,26] in that we now calculate
screened Coulomb matrix elements (which turn out to be
automatically short ranged). In contrast to the GWA [23]

we take into account only static (and not dynamic) screen-
ing and derive an effective (Hubbard) Hamiltonian with
statically screened interaction matrix elements (Hubbard
U’s). True many-body theory (with the possibility of the
calculation of a frequency dependent, dynamic selfenergy
beyond the RPA or GWA) is applied to this effective
Hamiltonian. This has, in particular, the advantage that
we have to calculate only the static dielectric constant
and, therefore, do not need the basis functions in an en-
ergy regime of unoccupied bands etc. [22].

To demonstrate the feasibility of this suggested ap-
proach we apply it to a simple metal, namely lithium (Li).
Here the 2s- and 2p-bands are the relevant bands which
determine the electronic structure and which in Hartree
approximation we calculate using a standard band struc-
ture method, namely the “linearized muffin tin orbital”
(LMTO) method [27,28]. The maximally localized Wan-
nier functions turn out to be of the sp3-orbital form, and
with respect to these orbitals we obtain four (almost) de-
generate hybridized 2sp-bands. For the one-particle (tight-
binding) matrix elements contributions up to the fifth
neighbor have to be taken into accout to reproduce the
band structure. Whereas the unscreened Coulomb matrix
elements turn out to be relatively large even for such a sim-
ple metal (of the order of 13 eV for the on-site intraband,
10 eV for the on-site interband and still 4−5 eV for the
nearest-neighbor matrix elements), the screened Coulomb
matrix elements are considerably smaller, namely on-site
matrix elements of the order of 2−5 eV and negligibly
small intersite matrix elements. Therefore, Li is described
by a four-band extended Hubbard model with (up to fifth
neighbor) tight-binding matrix elements and only local
on-site (inter- and intra-band) Coulomb matrix elements.
None of these matrix elements are free adjustable pa-
rameters; they are all determined “from first principles”.
Then many-body approximations can be applied. As the
screened Hubbard U’s are small compared to the band
width, a weak-coupling many-body approximation is jus-
tified just for Li, and we present and compare results ob-
tained within the (screened) Hartree-Fock approximation
(HFA) with results obtained within the simplest HFA-
extension, namely the SOPT.

The paper is organized as follows. In Section 2 we
describe the Hartree approximation, the results for the
Hartree band structure of Li and for the static (generalized
Lindhard) susceptibility. Section 3 presents and discusses
the maximally localized Wannier functions and their prop-
erties. Results for the matrix elements are given in Sec-
tion 4; here we describe, in particular, how the (screened)
Coulomb matrix elements can be calculated using fast
Fourier transformation (FFT) and present results for the
unscreened and screened Coulomb matrix elements. The
resulting Hamiltonian in second quantization is studied in
HFA and SOPT as the simplest weak-coupling many-body
methods, which are described in Sections 5 and 6. SOPT-
results for the selfenergy and the density of states are pre-
sented in Section 6 and compared with (screened) HFA
results before the paper closes with a short conclusion.
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2 Hartree approximation and dielectric
function

We start from an ab initio Hartree calculation, i.e. we solve
the effective one-particle Schrödinger equation

(H0 + VH(r))ϕnk(r) = εn(k)ϕnk(r). (1)

Here

H0 = − �
2

2m
∇2 + V (r) (2)

is the one-particle part of the Hamiltonian with V (r) the
(periodic) lattice potential and

VH(r) =
∫
d3r′

e2n(r′)
|r− r′| (3)

denotes the Hartree potential with the particle density

n(r) =
occ.∑
nkσ

|ϕnk(r)|2. (4)

Here we prefer the Hartree approximation to the LDA
because the effects of exchange and correlation shall be
taken into account by the application of the many-body
methods to the second-quantized Hamiltonian. Therefore,
it is not necessary (and avoids possible double counting)
to include exchange and correlation effects on the level of
the effective one-particle Schrödinger equation by means
of an approximate exchange-correlation potential.

As the particle density depends on the one-particle
wave functions ϕnk(r) to be determined, equation (1)
forms a selfconsistency problem to be solved by itera-
tion. The one-particle quantum numbers (nkσ) denote
the band index, the wave vector (from the first Brillouin
zone) and the spin. The one-particle Schrödinger equa-
tion (1) can be solved using any of the established numeri-
cal band-structure calculation methods. Just for simplicity
and convenience we use the “linearized muffin tin orbital”
(LMTO) method within the “atomic sphere approxima-
tion” (ASA) [27,28], which replaces the true potential
within one unit cell by a spherically symmetric potential
within a sphere of the same volume as that of the unit
cell. This allows a classification of all states in terms of
their angular momentum (l, s-, p-, d-, . . . ) contributions.
But any other established band structure method, for in-
stance the better justified full potential methods, can be
used here.

Results obtained for the Hartree band structure of Li
are shown in Figure 1 and compared with the correspond-
ing LDA band structure. Here a bcc-lattice with a lattice
constant of 3.5 Å ≈ 6.6a0 has been assumed, where a0

denotes the Bohr radius as natural length scale when us-
ing atomic Rydberg units (ARU); then the Wigner-Seitz
radius used in the ASA is rs = 3.25a0. Though the bcc-
lattice is not as closed packed as an fcc-lattice, for which
the ASA is usually good, the bcc-structure is also not
as open that corrections to the ASA (in form of “empty
spheres” etc.) are important. Furthermore, it is not our

E
ne

rg
y 

[e
V

]

Γ ∆
-6

-4

-2

0

2

4

6

8

10

12

14

16

H G N Σ Γ Λ P F H

Fig. 1. Hartree band-structure (dashed line) and LDA band
structure (full line) of Li; the horizontal straight lines indicate
the Fermi levels of the Hartree (dashed line) and LDA (full
line) calculation.

aim to perform the best possible band structure calcula-
tion, but we want to demonstrate the feasibility of the pro-
posed combination of band structure and many-body cal-
culations, and for that purpose any band structure method
can be used. From Figure 1 we see that at least for this
simple metal the Hartree and LDA result differ only in
an almost constant energy shift caused by the (Barth-
Hedin [29]) exchange correlation potential taken into ac-
count in LDA and neglected in the Hartree calculation.
Therefore, relative to the chemical potential, the LDA and
Hartree result are almost identical. Note that here (in con-
trast to the standard convention in band structure plots)
we do not choose the chemical potential as the zero of our
energy scale; the chemical potentials (Fermi levels) of the
Hartree and LDA calculation are indicated as horizontal
straight lines in Figure 1.

From this band structure, the static susceptibility and
the dielectric function can be calculated within the gener-
alized Lindhard theory or (static) RPA according to

χ(q) =
2e2

V

∑
n,n′,k

f(Enk) − f(En′k+q)
Enk − En′k+q

|Mn,n′(k,q)|2 (5)

with
Mn,n′(k,q) = 〈n′k + q|eiqr|nk〉. (6)

Obviously, because of the energy denominator in equa-
tion (5) the dominant contributions to χ(q) stem from
transitions from occupied to unoccupied states close to
the Fermi energy; therefore, the summation over the band
indices n, n′ in (5) can be restricted to the 2s-, 2p-bands
kept in the LMTO calculation. Then the static dielectric
function can be obtained from

ε(q) = 1 − 4π
q2
χ(q). (7)

This approach to calculate the susceptibility and the di-
electric function is similar to the calculations of the di-
electric function necessary for GWA treatments [22]. But
as we perform an ab initio calculation only for the static
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Fig. 2. q-dependence of static susceptibility for different q-
directions, q = q(100)(∆) (thick line), q = q(110)(Σ) (dotted
line), q = q(111)(Λ) (thin full line).

(q-dependent) susceptibility and dielectric function, we do
not need an extended basis set with basis functions from
a large energy range, but the (LMTO) basis set obtained
for the (Hartree or LDA) band structure calculation is also
sufficient for the calculation of χ(q). For a calculation of
the dynamic (frequency ω dependent) susceptibility also
transitions between (occupied and empty) states with an
energy difference ω are important so that a considerable
larger number of bands have to be considered and projec-
tions of the high energy sector on the low energy sector
as in reference [23] would be necessary. But for the static
susceptibility the high energy sector does not contribute.
As mentioned in the introduction, the main difference of
our approach to the standard GWA [19,21,23] is that we
start by taking into account only static screening, obtain
an effective Hamiltonian with statically screened, short-
ranged Coulomb matrix elements and apply many-body
theory to this effective Hamiltonian and can then take
into account dynamic (frequency dependent) selfenergies
beyond the RPA (GWA) diagram.

To obtain χ(q) numerically directly from (5), the k
mesh must be sufficiently fine, especially for small q. The
main effort lies in the calculation of the matrix elements
Mn,n′(k,q), for which the explicit Bloch functions ob-
tained in the solution of the eigenvalue problem (1) have
to be used.

The dependence of χ(q) (also measured in ARU) on
|q| is shown in Figure 2. The three lines show the result for
different q-directions, namely q = q(100)(∆), q(110)(Σ),
and q = q(111)(Λ). Obviously, χ(q) is not isotropic but
(slightly) depends on the q-direction. But the anisotropy
is weak, i.e. χ(q) mainly depends only on the absolute
value |q| and strongly decreases with increasing |q|, as it
is also known from the static Lindhard susceptibility of
the homogeneous electron gas.

3 Maximally localized Wannier functions

One of our goals is the first-principles determination of
the parameters of the electronic Hamiltonian in second
quantization. For that purpose one has to start from a
suitable one-particle basis, for which we choose the (max-
imally localized) Wannier functions. The Wannier states
are related to the Bloch states by the unitary transforma-
tions:

wRn(r) = 〈r|Rn〉 =
1
N

∑
k

e−ikRψnk(r)

|ψnk〉 =
∑
R

eikR|Rn〉. (8)

Using the algorithm proposed by Marzari and
Vanderbilt [24] maximally localized Wannier func-
tions can be calculated from the LMTO Bloch wave
functions, as described in reference [25]. Since the orig-
inal Bloch functions are given in terms of a spherical
harmonics expansion, the new Wannier functions (and
their contribution in each individual muffin-tin sphere)
can also be decomposed into these spherical harmonics
contributions. Therefore, one can decompose the Wannier
function localized at site 0 into its contributions in the
different muffin-tin spheres also at other sites R �= 0
according to

wn0(r) =
∑
R

wn0(R; r) (9)

where on the right hand side r varies only in the unit cell
(muffin-tin sphere) around R. Each component around
site R can be decomposed into its different spherical har-
monics contributions

wn0(R; r) =
∑
lm

φRn
l (r)Ylm(ϑ, ϕ). (10)

As described in reference [26] one can calculate the weight
of the contributions to the Wannier function (centered at
0) within the different muffin-tin spheres

〈wn0|wn0〉R ≡
∫
R

d3r|wn0(R; r)|2 (11)

and one can decompose this into the different l-
contributions according to:

〈wn0|wn0〉R =
∑

l

CRn
l . (12)

For the simple metal Li it is sufficient to explicitly
take into account only the 2s- and 2p-states, i.e. the l-
summation is restricted to l = 0, 1. In Table 1 we sum-
marize the properties of the maximally localized Wannier
functions by giving their l-composition and their contri-
bution in the central (0-) unit cell (muffin-tin sphere,
around which the Wannier function is localized), the near-
est neighbor sites and within the further sites. As we
start from a basis of four states (one 2s- and three 2p-
states) per spin direction and k, we obtain also four dif-
ferent (orthonormalized) Wannier functions per site and
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Table 1. Properties of the four maximally localized Wannier
functions for Li.

n l C0n
l

∑
Rn.n.

CRn
l

∑
R>n.n.

CRn
l

∑
R

CRn
l

0 s 0.240219 0.007837 0.000352 0.248408

p 0.727476 0.022392 0.001723 0.751592

Σ 0.967695 0.030229 0.002076 1.000000

1 s 0.240609 0.007837 0.000351 0.248797

p 0.727083 0.022400 0.001720 0.751203

Σ 0.967692 0.030237 0.002071 1.000000

2 s 0.240649 0.007837 0.000351 0.248837

p 0.727042 0.022401 0.001719 0.751163

Σ 0.967692 0.030238 0.002070 1.000000

3 s 0.240529 0.007837 0.000351 0.248717

p 0.727164 0.022398 0.001721 0.751283

Σ 0.967693 0.030235 0.002072 1.000000

Fig. 3. Three dimensional isosurface plot of the squared Wan-
nier function |wn(r)|2 (i.e. probability density for electron in
one Wannier function) within central unit cell 0 (position of the
atom); the Wigner-Seitz cell for the bcc-crystal is also sketched.

spin direction. We see from the table that about 97% of
the total weight of each of the four Wannier functions
is to be found already within the central unit cell; this
shows how properly well localized our Wannier functions
are. Furthermore, all four Wannier functions have about
25% s- and 75% p-character. The maximally localized
Wannier functions generated by the Marzari-Vanderbilt
algorithm are automatically of the hybridized sp3-type,
and as the “tails” within the other unit cells are almost
negligible, they correspond essentially to the atomic (or
molecular) sp3-orbitals. This is demonstrated in Figure 3,
which shows a 3-dimensional isosurface plot of one of the
four Wannier functions |wn0(r)|2 within a central unit
cell (muffin tin sphere); here the atom sits at the ori-
gin, atomic units (of the Bohr radius a0 ≈ 0.5 Å) are
used as the length scale, and the Wigner-Seitz cell for the
bcc-structure is also sketched. The other three Wannier
functions are equivalent but oriented into different, tetra-
hedron space directions.

4 One particle and Coulomb matrix elements

From the optimally localized Wannier functions one can
calculate the one-particle matrix elements

t12 =
∫
d3r w∗

1(r)H0w2(r) (13)

and the unscreened Coulomb matrix elements

W12,34 =
∫
d3r d3r′ w∗

1(r) w
∗
2(r′)

e2

|r− r′| w3(r′) w4(r).

(14)
Here we use the abbreviated notation 1, 2 to mean R1n1,
R2n2, etc. In reference [25] it is described how these ma-
trix elements can be evaluated. Concerning the Coulomb
matrix elements, we use the fast Fourier transformation
(FFT) algorithm proposed in reference [25]. Using

∫
d3q

eiqr

q2
=

2π2

|r| (15)

one finds

W12,34 =
e2

2π2

∫
d3q
q2

f14(q)f23(−q) (16)

fij(q) ≡
∫
d3reiqrw∗

i (r)wj(r). (17)

The fij functions are just the Fourier transforms of a prod-
uct of Wannier functions. These can be obtained very ef-
ficiently by calculating the Wannier functions on a cubic
mesh in real space and then applying a standard FFT
algorithm.

This form (16) also easily allows for the calculation of
(statically) screened Coulomb matrix elements using the
dielectric constant calculated according to (7):

W sc
12,34 =

e2

2π2

∫
d3q
ε(q)q2

f14(q)f23(−q). (18)

For Li results for the one-particle, the unscreened and the
screened Coulomb matrix elements are presented in the
following tables.

We see from Table 2 that the one-particle part H0

of the Hamiltonian has intra-band and inter-band ma-
trix elements, i.e. it is not diagonal with respect to the
band indices of the maximally localized Wannier func-
tions. From the site diagonal matrix elements one clearly
sees the equivalence of the four band indices of the sp3-
like Wannier basis. The nearest and next-nearest neigh-
bor matrix elements do not show this symmetry because
these matrix elements are given for one special nearest
and next-nearest neighbor lattice vector. Furthermore we
see that the site off-diagonal one-particle matrix elements
decrease with increasing distance, i.e. the tight-binding
assumption to neglect the inter-site (hopping) matrix el-
ements for larger lattice vector distances is justified. But
a nearest neighbor tight-binding model assumption is not
sufficient, it turned out that taking into account the hop-
ping matrix elements up to the fifth neighbors is a reason-
ably good approximation.
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Table 2. Interband and intraband one particle matrix ele-
ments (in units of eV) tRnm = 〈Rn|H0|0m〉 for R = 0 (on-
site), R = (0.5, 0.5, 0.5) (nearest neighbor) and R = (1, 0, 0)
(next nearest neighbor).

on-site
n = m = 0 1 2 3
0 –1.68 –0.41 –0.41 –0.41
1 –0.41 –1.68 –0.41 –0.41
2 –0.41 –0.41 –1.68 –0.41
3 –0.41 –0.41 –0.41 –1.68

nearest neighbors
n = m = 0 1 2 3
0 0.87 –0.79 –0.89 –2.23
1 0.31 –0.40 –0.20 –0.55
2 0.28 –0.15 –0.39 –0.47
3 –0.44 –0.47 0.38 –0.40

next nearest neighbors
n = m = 0 1 2 3
0 0.07 –0.28 0.15 –0.35
1 0.01 0.10 –0.02 0.07
2 0.03 –0.43 0.27 –0.53
3 0.00 0.13 –0.05 0.20

Table 3. Unscreened on-site direct W0n0m,0m0n, on-site ex-
change W0n0m,0n0m, and nearest neighbor direct W0nRm,Rm0n

Coulomb matrix elements calculated according to equa-
tion (16).

on-site direct Coulomb matrix elements
n = m = 0 1 2 3
0 13.16 10.13 10.12 10.13
1 10.13 13.17 10.12 10.12
2 10.12 10.12 13.17 10.12
3 10.13 10.12 10.12 13.17

on-site exchange matrix elements
n = m = 0 1 2 3
0 13.16 1.01 1.01 1.01
1 1.01 13.17 1.01 1.01
2 1.01 1.01 13.17 1.01
3 1.01 1.01 1.01 13.17

direct nearest neighbor Coulomb matrix elements
n = m = 0 1 2 3
0 4.53 3.80 3.77 3.50
1 5.11 4.44 4.21 3.88
2 5.17 4.28 4.44 3.91
3 6.35 4.86 4.82 4.48

Table 3 gives some of the unscreened two-particle
Coulomb matrix elements. We see that the on-site, intra-
band matrix elements (essentially corresponding to the
“Hubbard U”) are largest, of the magnitude 13 eV, the on-
site direct interband matrix elements are slightly smaller,
of the magnitude 10 eV, and the exchange matrix elements
are of the magnitude of 1 eV. As expected the nearest
neighbor direct Coulomb matrix elements are smaller than
the on-site ones but still of the magnitude 4−6 eV and,
therefore, by no means negligible. Therefore, when work-
ing with unscreened Coulomb matrix elements one has
to go far beyond nearest neighbors and, therefore, a very

Table 4. Screened on-site direct W sc
0n0m,0m0n, on-site ex-

change W sc
0n0m,0n0m, and nearest neighbor direct W sc

0nRm,Rm0n

Coulomb matrix elements calculated according to equa-
tion (16).

on-site direct Coulomb matrix elements [eV]
n = m = 0 1 2 3
0 4.63 2.36 2.36 2.36
1 2.36 4.63 2.36 2.36
2 2.36 2.36 4.63 2.36
3 2.36 2.36 2.36 4.63
on-site exchange matrix elements

n = m = 0 1 2 3
0 4.63 0.80 0.80 0.80
1 0.80 4.63 0.80 0.80
2 0.80 0.80 4.63 0.80
3 0.80 0.80 0.80 4.63

nearest neighbor (R = (0.5, 0.5, 0.5)) direct
n = m = 0 1 2 3
0 0.07 0.00 0.00 –0.01
1 0.13 0.03 0.01 0.00
2 0.14 0.02 0.03 0.01
3 0.48 0.09 0.08 0.04

large number of (direct and exchange) Coulomb matrix
elements has to be considered.

When one takes into account static screening and cal-
culates the screened Coulomb matrix elements according
to (18) using the approximations (7, 5) one obtains the
results tabulated in Table 4. As expected, the screened
Coulomb matrix elements are considerably smaller than
the unscreened ones. We now get about 4.6 eV for the
intra-band and 2.4 eV for the interband direct on-site
Coulomb matrix elements. The screened inter-site matrix
elements are now negligibly small. This means that a gen-
eralized four-band Hubbard model can be really justified
now when using the screened Coulomb matrix elements.

5 Hartree, unscreened and screened
Hartree-Fock approximation

After we have determined the matrix elements within our
restricted basis set of 4 maximally localized Wannier func-
tions (per site and spin), we have a Hamiltonian in second
quantization of the form

H =
∑
12σ

t12c
†
1σc2σ +

1
2

∑
1234σσ′

W12,34c
†
1σc

†
2σ′c3σ′c4σ. (19)

In praxis some further truncation is necessary, because one
cannot determine really all matrix elements in Wannier
representation. Rather the one-particle matrix elements
t12 will be explicitly evaluated only for a few neighbor
shells, and also not all possible (4N)4 Coulomb matrix
elements can be calculated but a restriction to the most
important ones is necessary. The explicit calculations yield
that only Coulomb matrix elements like W12,12 or W12,21,
for which at least two of the four indices pairwise agree, are
of considerable magnitude. Furthermore also these rapidly
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Fig. 4. Density of states in Hartree approximation in first
quantization (full line) and in second quantization (dashed
line); the vertical (full and dashed) lines indicate the position
of the Fermi energy in the two calculations.

decrease with increasing distance |R1−R2| so that also the
(unscreened) Coulomb matrix elements have to be consid-
ered only for a few neighbor shells. The simplest approxi-
mation one can now apply to the second quantized Hamil-
tonian (19) is again the Hartree approximation (HA). In
second quantization HA means the replacement of (19) by
the effective one-particle Hamiltonian:

HHA =
∑
12σ

(
t12 +ΣHA

12

)
c†1σc2σ (20)

with ΣHA
12 =

∑
34σ′

W13,42〈c†3σ′c4σ′〉. (21)

Here the expectation values 〈c†3σ′c4σ′〉 have to be deter-
mined self-consistently for the Hartree Hamiltonian (20).
A simple diagrammatic analysis shows that in any case
the Hartree term has to be evaluated with the unscreened
Coulomb matrix elements (16). For the direct, density-
density interaction entering the Hartree contributions, the
interaction line has not to be renormalized, whereas in all
higher diagrams (occurring in the diagrammatic pertur-
bation theory with respect to the Coulomb interaction)
renormalizations of the interaction lines and, therefore,
the replacement of the bare Coulomb matrix elements (16)
by the screened Coulomb matrix elements (18) is justified.

The effective Hamiltonian (20) in HA should, of course,
reproduce the result of the first quantized Hartree calcu-
lation (1), from which we started off applying the band
structure (LMTO) method and from which we obtained
our one-particle basis and our matrix elements. Neverthe-
less, to see that this is really the case is a good check for
consistency and if sufficiently many (Coulomb) matrix ele-
ments have been kept (because of the necessary truncation
discussed above). Figure 4 shows the results obtained for
the total density of states from the first and second quan-
tized Hartree calculation. There is a slight difference in
absolute energies, i.e. the second quantized Hartree DOS
lies slightly below the original, first quantized Hartree re-
sult. This is probably due to the necessary truncation of
the sum over neighbor shells. Relative to the Fermi level,
however, there is nearly perfect agreement so that this
consistency check is fulfilled.
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Fig. 5. Second quantized Hartree (dashed line), screened
Hartree-Fock (thin line) and unscreened Hartree-Fock (thick
full line) band structure; the corresponding straight lines par-
allel to the abscissa indicate the Fermi energy for the three
band structures.

The next step beyond the HA is the Hartree-Fock ap-
proximation (HFA) which includes the exchange terms in
addition to the simple (density-density) Hartree term. The
HFA to the Hamiltonian (19) is the effective one-particle
Hamiltonian

HHFA =
∑
12σ

(
t12 +ΣHFA

12,σ

)
c†1σc2σ (22)

with ΣHFA
12,σ = ΣHA

12 −
∑
34

W
(sc)
31,42〈c†3σc4σ〉. (23)

For the exchange part one can use either the un-
screened (bare) Coulomb matrix elements or the screened
ones. HFA results for the band structure for both cases
(screened and unscreened) are shown in Figure 5 and com-
pared with the HA-result shown already in Figure 1 (cor-
responding to the DOS of Fig. 4). We see that the main
effect of the exchange term is to draw the bands down-
wards again compared to the Hartree result. Within the
unscreened HFA the bands are drawn further down than
within the screened HFA, because the unscreened matrix
elements are larger and the inter-site contributions are
also not negligible. Also the total band width is slightly
enlarged within the unscreened HFA. Note that we do not
observe any (logarithmic) Fermi edge singularities, which
are commonly expected for a HFA treatment of quasi-free
electron systems. This is due to the fact that we use an
effective cutoff (truncation) of our Coulomb matrix ele-
ments, because they fall off rapidly with increasing dis-
tance from the Wannier function localization center R.
This means that – also for the unscreened calculation – our
Coulomb interaction is not really long-ranged. The HFA
Fermi level singularities (well known from the homoge-
neous electron gas, for instance [5]) have to be considered
as an artefact of the HFA. Therefore, our formulation of
HFA starting from a localized basis automatically avoids
this artefact because of the effective (necessary) trunca-
tion and short ranged nature of the effective Coulomb in-
teraction. On the one-hand side this is an artefact of this
additional truncation, on the other hand in reality such a
truncation of the effective Coulomb matrix elements (due
to screening and correlation effects beyond HFA) exists.
Therefore, a HFA formulation not leading to (artificial)
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Fig. 6. Two selfenergy Feynman diagrams occurring in second
order in the interaction.

singularities may also be considered to be an advantage
over standard HFA treatments (in k-space and, therefore,
with singularities).

In a screened HFA treatment this problem does not oc-
cur, as the screened Coulomb matrix elements really are
only short-ranged and a consideration of only the on-site
Coulomb matrix elements is sufficient. We see from Fig-
ure 5 that the screened HFA essentially only slightly shifts
the Hartree bands energetically downwards but qualita-
tively (and relative to the Fermi energy) is similar to the
HA-result (and also the LDA-result, compare Fig. 1).

6 Second order perturbation theory (SOPT)
with screened Coulomb matrix elements

The final goal is to take into account true many-body
(correlation) effects, and this means to apply systematic
many-body theory beyond HFA. From the band struc-
tures shown in Figures 1, 5 and the (Hartree) density of
states shown in Figure 4 we see that the relevant conduc-
tion bands of Li have a band width of about 16−17 eV.
From Table 4 we see that the largest (direct on-site)
screened Coulomb matrix elements are of the magnitude
2−5 eV, i.e. they are considerably smaller than the band
width. Therefore, for the simple metal Li a weak-coupling
many-body approximation is justified. The simplest weak-
coupling approximation beyond HFA is the second or-
der perturbation theory (SOPT). We neglect all intersite
Coulomb matrix elements and the exchange matrix ele-
ments, because – according to Table 4 – these are small
compared to the on-site intraband (screened) Coulomb
matrix element (“Hubbard-U”) U = 4.63 eV and the on-
site inter-band Coulomb matrix element V = 2.36 eV.
With these two matrix elements we apply SOPT rela-
tive to the HFA result. Then, according to standard many
body theory [5], the two selfenergy diagrams shown in
Figure 6 have to be taken into account in addition to the
(screened) HFA-contribution according to (22). In the dia-
grams the full lines represent HFA Green functions and the
dashed lines the matrix elements U and V . An intraband
interaction U (between two electrons of different spin at
the same site and in the same Wannier state or band) can
only occur for the first diagram, whereas the interband
interaction V occurs in both diagrams (also spin-diagonal
between two electrons of equal spin at the same site but
in different bands or Wannier states).

We assume further that the selfenergy is local or k-
independent, i.e. that only on-site matrix elements (diag-

onal in real space) are relevant, which is the usual DMFT-
assumption [15,16] which is usually good in dimension
d = 3. Then according to the standard rules of many-
body theory these two selfenergy diagrams stand for the
analytical expressions

Σ1σ
nn′(z) =

∑
n1n2σ′

uσσ′
nn1

uσσ′
n′n2

∫
dE1

∫
dE2

∫
dE3

× ρσ
nn′(E1)ρσ′

n1n2
(E2)ρσ′

n1n2
(E3)

× f(E1)f(E2) + f(E3) − f(E1)f(E3) − f(E2)f(E3)
z − E1 − E2 + E3

(24)

Σ2σ
nn′(z) =

∑
n1 �=n,n2 �=n′

uσσ′
nn1

uσσ′
n′n2

∫
dE1

∫
dE2

∫
dE3

× ρσ
nn2

(E1)ρσ
n1n′(E2)ρσ

n1n2
(E3)

× f(E1)f(E2) + f(E3) − f(E1)f(E3) − f(E2)f(E3)
z − E1 − E2 + E3

(25)

with

f(E) =
1

eβ(E−µ) + 1

uσσ′
nn′ =




0 for n = n′ and σ = σ′
U for n = n′ and σ �= σ′
V for n �= n′.

Here ρσ
nn′(E) denotes the (screened) HFA on-site spectral

function (per spin), which has non-diagonal elements with
respect to the band indices n, n′, in which the maximally
localized Wannier functions are obtained. The explicit cal-
culation of the SOPT selfenergy can be greatly simplified
using a Laplace transformation of the denominator and
an FFT algorithm, as described in reference [30].

Results for the SOPT-selfenergy are shown in Figure 7;
real and imaginary part of the (band-index) diagonal ele-
ment Σnn(E + i0) are shown as thick lines; the thin lines
varying around zero (on this linear scale) are the band in-
dex off-diagonal contributions, which are at least one mag-
nitude smaller than the main contribution as are the con-
tributions of the second diagram in Figure 6. Obviously,
the imaginary part ofΣnn(E+i0) vanishes proportional to
E2 exactly at the Fermi energy, reflecting Fermi liquid be-
havior, which automatically comes out from this approach
and is certainly fulfilled for this simple metal. Away from
the Fermi energy the selfenergy imaginary part is finite
reflecting finite lifetime effects due to the Coulomb scat-
tering. There is also a finite imaginary part at energies
below and above the (HFA) band giving rise to a broad-
ening of the DOS when taking into account many-body
effects on this level. The real part shows the expected be-
havior falling off proportional to 1/E for large energies
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Fig. 7. Energy dependence of SOPT-selfenergy contribution
(Fig. 6, relative to screened HFA-result), thick lines: band-
index diagonal, thin lines: band-index off-diagonal contribu-
tions, dashed lines: imaginary part, full lines: real part.

and some structure within the band. This has to be ex-
pected, as it is connected to the imaginary part by the
standard Kramers-Kronig relations. The real part of the
selfenergy, in particular, has a negative slope at the Fermi
level giving rise to a slight mass enhancement due to the
Coulomb interaction.

This slope is of the magnitude ∂Σ
∂E ≈ −0.055 giving

rise to a quasiparticle renormalization factor m∗
m = 1.057.

From the (Hartree, HFA or LDA) band structure shown
in Figures 1, 5 one obtains effective band masses at
the Fermi energy of the magnitude m ≈ 1.34 − 1.54m0

in the screened HFA and m ≈ 1.32 − 1.69m0 in the
LDA depending on the direction in k-space (m0 free elec-
tron mass), which is in rough agreement with results ob-
tained previously for Li [31]. Our many-body approxima-
tion yields only a slight further mass enhancement due
to correlations, which is not yet sufficient to explain val-
ues of mth = 2.19m0, which can be found in the lit-
erature [31,32] for the (thermal) effective mass for Li.
This may indicate that the k-dependence of the selfenergy,
which contributes to the mass enhancement [5] but is ne-
glected in the DMFT/SOPT used here, is of importance or
that despite the fact that we are in the weak-coupling limit
higher order resummations of selfenergy diagrams are nec-
essary to obtain a stronger mass enhancement. This and
the fact that even for the simple metal Li many-body ef-
fects and a quasiparticle mass enhancement cannot be ne-
glected is also in agreement with recent results of a GWA
application [33].

Keeping only the (band index) diagonal matrix ele-
ments of the selfenergy contribution (24) (corresponding
to the first diagram of Fig. 6), the SOPT density of states
can be calculated according to

ρnσ(E) =
−1
π

∫
dερ0

nσ(ε)Im
1

E + i0 −Σσ
nn(E) − ε

(26)

where ρ0
nσ(ε) denotes the HFA-DOS of the nth band.

In Figure 8 we show this SOPT-DOS and compare
it with the HFA-DOS (dashed line). We see that in the
main part of the spectrum, in particular in the occupied
part, the SOPT yields only a small correction to the HFA-
result. There is a slight shift downwards and there are tails
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Fig. 8. Density of states for metallic Li obtained in HFA
(dashed line) and SOPT (full line).

in the SOPT-DOS resulting from the finite imaginary part
of the selfenergy also in energy regions of still vanishing
HFA-DOS. Furthermore, the sharp structures in the un-
perturbed (Hartree and HFA) DOS are smeared out in
SOPT, which again is due to the finite selfenergy imagi-
nary part. But altogether, correlation effects are relatively
small, as expected for this simple metal and justifying once
more the application of a weak-coupling many-body ap-
proximation.

7 Conclusion

We have proposed and applied a new combination of an
ab initio (first principles) method with many-body meth-
ods. We start from a first-principles Hartree calculation,
which yields the Hartree band structure and a suitable
one-particle basis in the form of Bloch functions. From the
eigenenergies a calculation of the static susceptibility and
dielectric function is possible. From the Bloch functions
one can determine maximally localized Wannier functions
as a new one-particle basis of spatially localized functions.
Within this Wannier basis all the one-particle and two-
particle (Coulomb) matrix elements can be calculated.
This yields the many-body Hamiltonian in second quanti-
zation with parameters determined “from first principles”.
Using the static dielectric function also screened Coulomb
matrix elements can be obtained. The simplest approxi-
mations to be applied to this second quantized Hamilto-
nian is again the Hartree and the Hartree-Fock approx-
imation (HFA), which can be applied using screened or
unscreened Coulomb matrix elements. Many-body meth-
ods beyond HFA can be applied at least when using the
second quantized Hamiltonian with the screened Coulomb
matrix elements.

To demonstrate the feasibility of this approach we ap-
plied it to the simple metal Li. For this system we per-
formed an LMTO band structure calculation in Hartree
approximation keeping only the 2s- and 2p (l = 0, 1)
bands. The maximally localized Wannier functions ob-
tained turn out to be of the sp3-orbital form and to be
localized with a degree of about 96% within the first, cen-
tral unit cell (muffin-tin sphere). The unscreened Coulomb
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matrix elements are still relatively large, of the order
of 13 eV for the on-site intraband, of 10 eV for the
on-site interband, and still up to 6 eV for the near-
est neighbor direct (density-density) Coulomb interaction.
The screened Coulomb matrix elements are considerably
smaller; we obtain an order of 4 eV for the intraband on-
site, 2 eV for the interband on-site and negligible small
intersite screened Coulomb matrix elements. Therefore,
with screened Coulomb matrix elements the second quan-
tized Hamiltonian is of the form of a four-band Hubbard
model with an on-site intraband Hubbard-U and a local
(on-site) interband Coulomb matrix element V . As these
screened Coulomb matrix elements are small compared to
the conduction band width, one is in the weak coupling
situation for this simple metal. Therefore, a weak-coupling
many-body approximation is justified, and we calculated
the electronic selfenergy within second order perturbation
theory (SOPT). We obtain Fermi liquid behavior with a
small mass enhancement due to the weak correlation ef-
fects and only a small modification of the SOPT-density
of states when compared to the HFA-result, which once
more shows that the weak-coupling theory is sufficient in
this case.

But the method used and proposed is, in principle,
also applicable to other, more strongly correlated systems.
Only the many-body approximation to be applied will be a
different one when the screened Coulomb matrix elements
are no longer small in comparison to the band width, be-
cause then SOPT is probably no longer sufficient. Then
other many-body methods, probably based on the DMFT,
will have to be applied.
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for a cooperation in the early stages of this project, for his
interest and for useful discussions.
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